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Futures ’VNPLRG

The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel — in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}
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Future ’VNPLRG

If we wrapping it into the Future, it has not been completed yet:

val eventuallnt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventuallnt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
® Success if the computation is successful
® Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.
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Callbacks — onComplete 7V PLRG

We can use callbacks with futures to handle the result.

There are three common callbacks:
® onComplete
® foreach
® andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)

List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future (namesTask) .onComplete {
case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}
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Callbacks — foreach 7VNPLRG

If we want to only handle the successful case, we can use foreach:

Future(namesTask) .foreach(names => for (name <- names) println(name))

It is equivalent to the following code using for-comprehension:

for {
names <- Future(namesTask)
name <- names

} println(name)

because the for-comprehension without yield will be desugared into the
sequence of foreach method calls:

Future (namesTask) .foreach(names => names.foreach(name => println(name)))
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Callbacks — andThen ’VNPLRG

The andThen callback is used purely for side-effecting purposes.

While onComplete and foreach return a Unit, andThen returns the
original Future without any transformation.

var firstChars: Set[Char] = Set.empty

Future {
namesTask
}.andThen {
case Success(names) =>
println("Assigning first characters...")

Thread.sleep(2_000)
for (name <- names) firstChars += name.head
}.andThen {
case _ =>
println("Printing first characters...")
Thread.sleep(2_000)
for (c <- firstChars) println(c) // 'P', 'L', 'R', 'H'
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Combinators — map 7V PLRG

We can use combinators to transform the value inside the Future.

There are three common combinators:
® map — maps the value inside the Future
® flatMap — maps and flattens the value inside the Future

e filter — filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)

List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Combinators — flatMap and filter ’MPLRG

The flatMap combinator is used when the transformation returns a
Future; it flattens the nested Future:

val nestedLengths: Future[Future[List[Int]]] =
Future (namesTask) .map(names => Future(names.map(_.length)))

val lengths: Future[List[Int]] =
Future (namesTask) .flatMap(names => Future(names.map(_.length)))

The filter combinator creates a new Future with the value satisfying
the predicate:

val namesTrue = Future(namesTask).filter(_.length > 3)
val namesFalse = Future(namesTask).filter(_.length > 7)

After 3 seconds, two Future objects will be:

namesTrue // Future(Success(List("Park", "Lee", "Ryu", "Hong")))
namesFalse // Future(Failure(... predicate is not satisfied)
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Combinators — For-Comprehension VPLRG

We can also use for-comprehension to use map, flatMap, and filter
(more precisely, withFilter) combinators for Future objects.

val lengths: Future[List[Int]] = for {
names <- Future(namesTask)
if names.length > 3
lengths <- Future(names.map(_.length))
} yield lengths

It will be desugared into the following code:

val lengths: Future[List[Int]] = Future(namesTask)
.withFilter (names => names.length > 3)
.flatMap(names => {

Future (names.map(_.length))
b
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Multiple Futures ’NPLRG

To run multiple computations in parallel and combine the results, we
need to use for-comprehension.

For example, we can combine three futures £1, £2, and £3:

val f1 = Future { Thread.sleep(1_000); 5 }
val f2 = Future { Thread.sleep(2_000); 6 }
val £3 = Future { Thread.sleep(3_000); 7 }

val result = for {
rl <- f1
r2 <- f2
r3 <- £f3

} yield r1 + r2 + r3

// Prints "The result is 18." after 3 seconds
result.foreach { r => println(s"The result is $r.") }

println("The main thread waits for the result.")
Thread.sleep(10_000)
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Multiple Futures ’NPLRG

Note that if the computations were run within the for-comprehension, they
would be executed sequentially.

val result = for {
rl <- Future { Thread.sleep(1_000); 5 }
r2 <- Future { Thread.sleep(2_000); 6 }
r3 <- Future { Thread.sleep(3_000); 7 }
} yield r1 + r2 + r3

// Prints "The result is 18." after 6 seconds
result.foreach { r => println(s"The result is $r.") }

So, we need to remember to run the computations outside the
for-comprehension to run them in parallel.
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Futures ’VNPLRG

To summarize, a few key points about futures are:

Futures are intended for one-shot computations by creating a
temporary pocket of concurrency.

A future starts running as soon as it is created.

We don’t have to concern ourselves with the low-level details of
thread management.

¢ We can combine multiple futures using for-comprehension.
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Promise ’VNPLRG

So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
® success — completes with a value to represent success

e failure — completes with an exception to represent failure
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val p: Promise[Int] = Promise()
val f: Future[Int] = p.future

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p-success(x)

println("Producer do something else...")
}
val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>
println(s"Consuming... $r")

Thread.sleep(3_000)
println("Done consuming.")
}

println("Consumer do something else...")
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Promise ’VNPLRG

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

The producer future produces a value x = 42 after 2 seconds.

Then, it completes the future £ of the promise p with the value of x (i.e.,
42) using p.success(x).

Finally, without waiting for the completion of the future f, the producer
future continues to do something else.
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Promise ’VNPLRG

val consumer = Future {

println("Consumer set up a callback...")
f.foreach { r =>
println(s"Consuming... $r")

Thread.sleep(3_000)
println("Done consuming.")
}

println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future £ of the promise p.

Without waiting for the completion of the future £, the consumer future
continues to do something else.

After 2 seconds, the future £ of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.
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The method completeWith can be used to complete a promise p with

another future £ (i.e., p.completeWith(£)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {
Thread.sleep(2_000)
println("Done producing.")
42
}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something

else before producing the value 42.
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Parallel Collection ’VNPLRG

We can use parallel collections! to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %J, "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(l, 2, 3, 4, 5)

'https://github.com/scala/scala-parallel-collections
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Parallel Collection ’VNPLRG

For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)

list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).tolist // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.
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Parallel Collection ’VNPLRG

Similarly, we can use other methods such as reduce or filter:

For example, we can compute the sum of the first 1,000,000 numbers in
parallel using reduce method:

(1L to 1_000_000L).toArray.par.reduce(_ + _) // 500000500000

Or, we can filter numbers divisible by 3 in parallel using filter method:

(1L to 1_000_0OOL).toArray.par.filter(_ % 3L == OL).length // 333333
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However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

e Side-effecting operations can lead to non-determinism.

* Non-associative operations can lead to non-determinism.
For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)
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