Lecture 12 — Concurrent Programming

SWS121: Secure Programming

Jihyeok Park

7VPLRG

2024 Spring

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Recall ’VNPLRG

* Metaprogramming
¢ Inline

® |nline Constants

Inline Methods

Inline Parameters
® |nline Matches

® Transparent Inline Methods

e Macros

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Contents

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

’VNPLRG

SWS121 @ Korea University Lecture 12 — Concurrent Programming

June 3, 2024



Contents
1. Futures
Callbacks

Combinators
Multiple Futures

’VNPLRG

SWS121 @ Korea University Lecture 12 — Concurrent Programming

June 3, 2024



Futures ’VNPLRG

The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel — in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Future ’VNPLRG

If we wrapping it into the Future, it has not been completed yet:

val eventuallnt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventuallnt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
® Success if the computation is successful
® Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.

SWS121 @ Korea University

Lecture 12 — Concurrent Programming June 3, 2024




Callbacks — onComplete 7V PLRG

We can use callbacks with futures to handle the result.

There are three common callbacks:
® onComplete
® foreach
® andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)

List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future (namesTask) .onComplete {
case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Callbacks — foreach 7VNPLRG

If we want to only handle the successful case, we can use foreach:

Future(namesTask) .foreach(names => for (name <- names) println(name))

It is equivalent to the following code using for-comprehension:

for {
names <- Future(namesTask)
name <- names

} println(name)

because the for-comprehension without yield will be desugared into the
sequence of foreach method calls:

Future (namesTask) .foreach(names => names.foreach(name => println(name)))

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Callbacks — andThen ’VNPLRG

The andThen callback is used purely for side-effecting purposes.

While onComplete and foreach return a Unit, andThen returns the
original Future without any transformation.

var firstChars: Set[Char] = Set.empty

Future {
namesTask
}.andThen {
case Success(names) =>
println("Assigning first characters...")

Thread.sleep(2_000)
for (name <- names) firstChars += name.head
}.andThen {
case _ =>
println("Printing first characters...")
Thread.sleep(2_000)
for (c <- firstChars) println(c) // 'P', 'L', 'R', 'H'

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Combinators — map 7V PLRG

We can use combinators to transform the value inside the Future.

There are three common combinators:
® map — maps the value inside the Future
® flatMap — maps and flattens the value inside the Future

e filter — filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)

List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Combinators — flatMap and filter ’MPLRG

The flatMap combinator is used when the transformation returns a
Future; it flattens the nested Future:

val nestedLengths: Future[Future[List[Int]]] =
Future (namesTask) .map(names => Future(names.map(_.length)))

val lengths: Future[List[Int]] =
Future (namesTask) .flatMap(names => Future(names.map(_.length)))

The filter combinator creates a new Future with the value satisfying
the predicate:

val namesTrue = Future(namesTask).filter(_.length > 3)
val namesFalse = Future(namesTask).filter(_.length > 7)

After 3 seconds, two Future objects will be:

namesTrue // Future(Success(List("Park", "Lee", "Ryu", "Hong")))
namesFalse // Future(Failure(... predicate is not satisfied)

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Combinators — For-Comprehension VPLRG

We can also use for-comprehension to use map, flatMap, and filter
(more precisely, withFilter) combinators for Future objects.

val lengths: Future[List[Int]] = for {
names <- Future(namesTask)
if names.length > 3
lengths <- Future(names.map(_.length))
} yield lengths

It will be desugared into the following code:

val lengths: Future[List[Int]] = Future(namesTask)
.withFilter (names => names.length > 3)
.flatMap(names => {

Future (names.map(_.length))
b

SWS121 @ Korea University

Lecture 12 — Concurrent Programming June 3, 2024



Multiple Futures ’NPLRG

To run multiple computations in parallel and combine the results, we
need to use for-comprehension.

For example, we can combine three futures £1, £2, and £3:

val f1 = Future { Thread.sleep(1_000); 5 }
val f2 = Future { Thread.sleep(2_000); 6 }
val £3 = Future { Thread.sleep(3_000); 7 }

val result = for {
rl <- f1
r2 <- f2
r3 <- £f3

} yield r1 + r2 + r3

// Prints "The result is 18." after 3 seconds
result.foreach { r => println(s"The result is $r.") }

println("The main thread waits for the result.")
Thread.sleep(10_000)

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Multiple Futures ’NPLRG

Note that if the computations were run within the for-comprehension, they
would be executed sequentially.

val result = for {
rl <- Future { Thread.sleep(1_000); 5 }
r2 <- Future { Thread.sleep(2_000); 6 }
r3 <- Future { Thread.sleep(3_000); 7 }
} yield r1 + r2 + r3

// Prints "The result is 18." after 6 seconds
result.foreach { r => println(s"The result is $r.") }

So, we need to remember to run the computations outside the
for-comprehension to run them in parallel.

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Futures ’VNPLRG

To summarize, a few key points about futures are:

Futures are intended for one-shot computations by creating a
temporary pocket of concurrency.

A future starts running as soon as it is created.

We don’t have to concern ourselves with the low-level details of
thread management.

¢ We can combine multiple futures using for-comprehension.

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Contents ’VNPLRG

2. Promise

SWS121 @ Korea University Concurrent Programming June 3, 2024



Promise ’VNPLRG

So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
® success — completes with a value to represent success

e failure — completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024 17 /28



Promise

’VNPLRG

val p: Promise[Int] = Promise()
val f: Future[Int] = p.future

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p-success(x)

println("Producer do something else...")
}
val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>
println(s"Consuming... $r")

Thread.sleep(3_000)
println("Done consuming.")
}

println("Consumer do something else...")

SWS121 @ Korea University Lecture 12 — Concurrent Programming

June 3, 2024




Promise ’VNPLRG

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

The producer future produces a value x = 42 after 2 seconds.

Then, it completes the future £ of the promise p with the value of x (i.e.,
42) using p.success(x).

Finally, without waiting for the completion of the future f, the producer
future continues to do something else.

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Promise ’VNPLRG

val consumer = Future {

println("Consumer set up a callback...")
f.foreach { r =>
println(s"Consuming... $r")

Thread.sleep(3_000)
println("Done consuming.")
}

println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future £ of the promise p.

Without waiting for the completion of the future £, the consumer future
continues to do something else.

After 2 seconds, the future £ of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024




Promise

’VNPLRG

The method completeWith can be used to complete a promise p with

another future £ (i.e., p.completeWith(£)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {
Thread.sleep(2_000)
println("Done producing.")
42
}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something

else before producing the value 42.

SWS121 @ Korea University Lecture 12 — Concurrent Programming

June 3, 2024




Contents ’VNPLRG

3. Parallel Collection

SWS121 @ Korea University Concurrent Programming June 3, 2024



Parallel Collection ’VNPLRG

We can use parallel collections! to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %J, "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(l, 2, 3, 4, 5)

'https://github.com/scala/scala-parallel-collections
SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024 23/28


https://github.com/scala/scala-parallel-collections

Parallel Collection ’VNPLRG

For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)

list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).tolist // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.

SWS121 @ Korea University

Lecture 12 — Concurrent Programming June 3, 2024



Parallel Collection ’VNPLRG

Similarly, we can use other methods such as reduce or filter:

For example, we can compute the sum of the first 1,000,000 numbers in
parallel using reduce method:

(1L to 1_000_000L).toArray.par.reduce(_ + _) // 500000500000

Or, we can filter numbers divisible by 3 in parallel using filter method:

(1L to 1_000_0OOL).toArray.par.filter(_ % 3L == OL).length // 333333

SWS121 @ Korea University

Lecture 12 — Concurrent Programming June 3, 2024



Parallel Collection ’VNPLRG

However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

e Side-effecting operations can lead to non-determinism.

* Non-associative operations can lead to non-determinism.
For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024



Summary

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

’VNPLRG

SWS121 @ Korea University Lecture 12 — Concurrent Programming

June 3, 2024



Next Lecture ’VNPLRG

® Course Review

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 12 — Concurrent Programming June 3, 2024


https://plrg.korea.ac.kr

	Futures
	Callbacks
	Combinators
	Multiple Futures

	Promise
	Parallel Collection

