
Lecture 12 – Concurrent Programming
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 1 / 28

Recall
• Metaprogramming

• Inline

• Inline Constants

• Inline Methods

• Inline Parameters

• Inline Matches

• Transparent Inline Methods

• Macros

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 2 / 28

Contents

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 3 / 28

Contents

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 4 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way?

Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Futures
The following code immediately runs task and bounds to x:

// Sleep for 5 seconds and then return 42
def task: Int = { Thread.sleep(5_000); 42 }
val x = task // Blocks for 5 seconds and then x = 42

Can we run task in a non-blocking way? Yes with Futures!

Futures provide a way to reason about performing many operations in
parallel – in a non-blocking way.

A Future represents a value which may or may not be currently available,
but will be available at some point, or an exception if not.

To utilize a Future, we need to import the following:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Failure, Success}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 5 / 28

Future
If we wrapping it into the Future, it has not been completed yet:

val eventualInt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventualInt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
• Success if the computation is successful
• Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 6 / 28

Future
If we wrapping it into the Future, it has not been completed yet:

val eventualInt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventualInt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
• Success if the computation is successful
• Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 6 / 28

Future
If we wrapping it into the Future, it has not been completed yet:

val eventualInt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventualInt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
• Success if the computation is successful
• Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 6 / 28

Future
If we wrapping it into the Future, it has not been completed yet:

val eventualInt: Future[Int] = Future(task) // Future(<not completed>)

But if we check again after 5 seconds, it is completed successfully:

eventualInt // Future(<not completed>) before 5 seconds
eventualInt // Future(Success(42)) after 5 seconds

The value in a Future is always an instance of Try types:
• Success if the computation is successful
• Failure if the computation throws an exception

Therefore, we need to handle the Try type to get the result.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 6 / 28

Callbacks – onComplete
We can use callbacks with futures to handle the result.

There are three common callbacks:
• onComplete
• foreach
• andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future(namesTask).onComplete {

case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 7 / 28

Callbacks – onComplete
We can use callbacks with futures to handle the result.

There are three common callbacks:
• onComplete
• foreach
• andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future(namesTask).onComplete {

case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 7 / 28

Callbacks – onComplete
We can use callbacks with futures to handle the result.

There are three common callbacks:
• onComplete
• foreach
• andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future(namesTask).onComplete {

case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 7 / 28

Callbacks – onComplete
We can use callbacks with futures to handle the result.

There are three common callbacks:
• onComplete
• foreach
• andThen

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The onComplete callback takes a function that handles the Try type:

// After 3 seconds, prints "Park", "Lee", "Ryu", "Hong"
Future(namesTask).onComplete {

case Success(names) => for (name <- names) println(name)
case Failure(e) => e.printStackTrace

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 7 / 28

Callbacks – foreach
If we want to only handle the successful case, we can use foreach:

Future(namesTask).foreach(names => for (name <- names) println(name))

It is equivalent to the following code using for-comprehension:

for {
names <- Future(namesTask)
name <- names

} println(name)

because the for-comprehension without yield will be desugared into the
sequence of foreach method calls:

Future(namesTask).foreach(names => names.foreach(name => println(name)))

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 8 / 28

Callbacks – foreach
If we want to only handle the successful case, we can use foreach:

Future(namesTask).foreach(names => for (name <- names) println(name))

It is equivalent to the following code using for-comprehension:

for {
names <- Future(namesTask)
name <- names

} println(name)

because the for-comprehension without yield will be desugared into the
sequence of foreach method calls:

Future(namesTask).foreach(names => names.foreach(name => println(name)))

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 8 / 28

Callbacks – foreach
If we want to only handle the successful case, we can use foreach:

Future(namesTask).foreach(names => for (name <- names) println(name))

It is equivalent to the following code using for-comprehension:

for {
names <- Future(namesTask)
name <- names

} println(name)

because the for-comprehension without yield will be desugared into the
sequence of foreach method calls:

Future(namesTask).foreach(names => names.foreach(name => println(name)))

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 8 / 28

Callbacks – andThen
The andThen callback is used purely for side-effecting purposes.

While onComplete and foreach return a Unit, andThen returns the
original Future without any transformation.

var firstChars: Set[Char] = Set.empty
Future {

namesTask
}.andThen {

case Success(names) =>
println("Assigning first characters...")
Thread.sleep(2_000)
for (name <- names) firstChars += name.head

}.andThen {
case _ =>

println("Printing first characters...")
Thread.sleep(2_000)
for (c <- firstChars) println(c) // 'P', 'L', 'R', 'H'

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 9 / 28

Callbacks – andThen
The andThen callback is used purely for side-effecting purposes.

While onComplete and foreach return a Unit, andThen returns the
original Future without any transformation.

var firstChars: Set[Char] = Set.empty
Future {

namesTask
}.andThen {

case Success(names) =>
println("Assigning first characters...")
Thread.sleep(2_000)
for (name <- names) firstChars += name.head

}.andThen {
case _ =>

println("Printing first characters...")
Thread.sleep(2_000)
for (c <- firstChars) println(c) // 'P', 'L', 'R', 'H'

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 9 / 28

Combinators – map
We can use combinators to transform the value inside the Future.

There are three common combinators:
• map – maps the value inside the Future
• flatMap – maps and flattens the value inside the Future
• filter – filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 10 / 28

Combinators – map
We can use combinators to transform the value inside the Future.

There are three common combinators:
• map – maps the value inside the Future
• flatMap – maps and flattens the value inside the Future
• filter – filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 10 / 28

Combinators – map
We can use combinators to transform the value inside the Future.

There are three common combinators:
• map – maps the value inside the Future
• flatMap – maps and flattens the value inside the Future
• filter – filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 10 / 28

Combinators – map
We can use combinators to transform the value inside the Future.

There are three common combinators:
• map – maps the value inside the Future
• flatMap – maps and flattens the value inside the Future
• filter – filters the value inside the Future

// Sleep for 3 seconds and then return a list of names
def namesTask: List[String] =

Thread.sleep(3_000)
List("Park", "Lee", "Ryu", "Hong")

The map combinator takes a function transforming the value in Future:

val lengths = Future(namesTask).map(names => names.map(_.length)

lengths // Future(Success(List(4, 3, 3, 4))) after 3 seconds

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 10 / 28

Combinators – flatMap and filter
The flatMap combinator is used when the transformation returns a
Future; it flattens the nested Future:

val nestedLengths: Future[Future[List[Int]]] =
Future(namesTask).map(names => Future(names.map(_.length)))

val lengths: Future[List[Int]] =
Future(namesTask).flatMap(names => Future(names.map(_.length)))

The filter combinator creates a new Future with the value satisfying
the predicate:

val namesTrue = Future(namesTask).filter(_.length > 3)
val namesFalse = Future(namesTask).filter(_.length > 7)

After 3 seconds, two Future objects will be:

namesTrue // Future(Success(List("Park", "Lee", "Ryu", "Hong")))
namesFalse // Future(Failure(... predicate is not satisfied)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 11 / 28

Combinators – flatMap and filter
The flatMap combinator is used when the transformation returns a
Future; it flattens the nested Future:

val nestedLengths: Future[Future[List[Int]]] =
Future(namesTask).map(names => Future(names.map(_.length)))

val lengths: Future[List[Int]] =
Future(namesTask).flatMap(names => Future(names.map(_.length)))

The filter combinator creates a new Future with the value satisfying
the predicate:

val namesTrue = Future(namesTask).filter(_.length > 3)
val namesFalse = Future(namesTask).filter(_.length > 7)

After 3 seconds, two Future objects will be:

namesTrue // Future(Success(List("Park", "Lee", "Ryu", "Hong")))
namesFalse // Future(Failure(... predicate is not satisfied)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 11 / 28

Combinators – flatMap and filter
The flatMap combinator is used when the transformation returns a
Future; it flattens the nested Future:

val nestedLengths: Future[Future[List[Int]]] =
Future(namesTask).map(names => Future(names.map(_.length)))

val lengths: Future[List[Int]] =
Future(namesTask).flatMap(names => Future(names.map(_.length)))

The filter combinator creates a new Future with the value satisfying
the predicate:

val namesTrue = Future(namesTask).filter(_.length > 3)
val namesFalse = Future(namesTask).filter(_.length > 7)

After 3 seconds, two Future objects will be:

namesTrue // Future(Success(List("Park", "Lee", "Ryu", "Hong")))
namesFalse // Future(Failure(... predicate is not satisfied)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 11 / 28

Combinators – For-Comprehension
We can also use for-comprehension to use map, flatMap, and filter
(more precisely, withFilter) combinators for Future objects.

val lengths: Future[List[Int]] = for {
names <- Future(namesTask)
if names.length > 3
lengths <- Future(names.map(_.length))

} yield lengths

It will be desugared into the following code:

val lengths: Future[List[Int]] = Future(namesTask)
.withFilter(names => names.length > 3)
.flatMap(names => {

Future(names.map(_.length))
})

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 12 / 28

Multiple Futures
To run multiple computations in parallel and combine the results, we
need to use for-comprehension.

For example, we can combine three futures f1, f2, and f3:

val f1 = Future { Thread.sleep(1_000); 5 }
val f2 = Future { Thread.sleep(2_000); 6 }
val f3 = Future { Thread.sleep(3_000); 7 }

val result = for {
r1 <- f1
r2 <- f2
r3 <- f3

} yield r1 + r2 + r3

// Prints "The result is 18." after 3 seconds
result.foreach { r => println(s"The result is $r.") }

println("The main thread waits for the result.")
Thread.sleep(10_000)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 13 / 28

Multiple Futures
To run multiple computations in parallel and combine the results, we
need to use for-comprehension.

For example, we can combine three futures f1, f2, and f3:

val f1 = Future { Thread.sleep(1_000); 5 }
val f2 = Future { Thread.sleep(2_000); 6 }
val f3 = Future { Thread.sleep(3_000); 7 }

val result = for {
r1 <- f1
r2 <- f2
r3 <- f3

} yield r1 + r2 + r3

// Prints "The result is 18." after 3 seconds
result.foreach { r => println(s"The result is $r.") }

println("The main thread waits for the result.")
Thread.sleep(10_000)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 13 / 28

Multiple Futures
Note that if the computations were run within the for-comprehension, they
would be executed sequentially.

val result = for {
r1 <- Future { Thread.sleep(1_000); 5 }
r2 <- Future { Thread.sleep(2_000); 6 }
r3 <- Future { Thread.sleep(3_000); 7 }

} yield r1 + r2 + r3

// Prints "The result is 18." after 6 seconds
result.foreach { r => println(s"The result is $r.") }

So, we need to remember to run the computations outside the
for-comprehension to run them in parallel.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 14 / 28

Multiple Futures
Note that if the computations were run within the for-comprehension, they
would be executed sequentially.

val result = for {
r1 <- Future { Thread.sleep(1_000); 5 }
r2 <- Future { Thread.sleep(2_000); 6 }
r3 <- Future { Thread.sleep(3_000); 7 }

} yield r1 + r2 + r3

// Prints "The result is 18." after 6 seconds
result.foreach { r => println(s"The result is $r.") }

So, we need to remember to run the computations outside the
for-comprehension to run them in parallel.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 14 / 28

Multiple Futures
Note that if the computations were run within the for-comprehension, they
would be executed sequentially.

val result = for {
r1 <- Future { Thread.sleep(1_000); 5 }
r2 <- Future { Thread.sleep(2_000); 6 }
r3 <- Future { Thread.sleep(3_000); 7 }

} yield r1 + r2 + r3

// Prints "The result is 18." after 6 seconds
result.foreach { r => println(s"The result is $r.") }

So, we need to remember to run the computations outside the
for-comprehension to run them in parallel.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 14 / 28

Futures
To summarize, a few key points about futures are:

• Futures are intended for one-shot computations by creating a
temporary pocket of concurrency.

• A future starts running as soon as it is created.

• We don’t have to concern ourselves with the low-level details of
thread management.

• We can combine multiple futures using for-comprehension.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 15 / 28

Contents

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 16 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
So far, we have only considered Future objects directly created by the
constructor of the Future class.

We can also create a Future object using a promise.

Futures are defined as a type of read-only placeholder object created for a
result which does not yet exist.

Promises are defined as a writable, single-assignment container, which
completes a future with a value.

We need to import the following to use Promise:

import scala.concurrent.Promise

We can complete a future p.future of a promise p with:
• success – completes with a value to represent success
• failure – completes with an exception to represent failure

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 17 / 28

Promise
val p: Promise[Int] = Promise()
val f: Future[Int] = p.future

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

}

val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>

println(s"Consuming... $r")
Thread.sleep(3_000)
println("Done consuming.")

}
println("Consumer do something else...")

}

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 18 / 28

Promise

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

}

The producer future produces a value x = 42 after 2 seconds.

Then, it completes the future f of the promise p with the value of x (i.e.,
42) using p.success(x).

Finally, without waiting for the completion of the future f, the producer
future continues to do something else.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 19 / 28

Promise

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

}

The producer future produces a value x = 42 after 2 seconds.

Then, it completes the future f of the promise p with the value of x (i.e.,
42) using p.success(x).

Finally, without waiting for the completion of the future f, the producer
future continues to do something else.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 19 / 28

Promise

val producer = Future {
println("Producing...")
val x: Int = { Thread.sleep(2_000); 42 }
println("Done producing.")
p.success(x)
println("Producer do something else...")

}

The producer future produces a value x = 42 after 2 seconds.

Then, it completes the future f of the promise p with the value of x (i.e.,
42) using p.success(x).

Finally, without waiting for the completion of the future f, the producer
future continues to do something else.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 19 / 28

Promise

val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>

println(s"Consuming... $r")
Thread.sleep(3_000)
println("Done consuming.")

}
println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future f of the promise p.

Without waiting for the completion of the future f, the consumer future
continues to do something else.

After 2 seconds, the future f of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 20 / 28

Promise

val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>

println(s"Consuming... $r")
Thread.sleep(3_000)
println("Done consuming.")

}
println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future f of the promise p.

Without waiting for the completion of the future f, the consumer future
continues to do something else.

After 2 seconds, the future f of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 20 / 28

Promise

val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>

println(s"Consuming... $r")
Thread.sleep(3_000)
println("Done consuming.")

}
println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future f of the promise p.

Without waiting for the completion of the future f, the consumer future
continues to do something else.

After 2 seconds, the future f of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 20 / 28

Promise

val consumer = Future {
println("Consumer set up a callback...")
f.foreach { r =>

println(s"Consuming... $r")
Thread.sleep(3_000)
println("Done consuming.")

}
println("Consumer do something else...")

}

The consumer future sets up a callback to consume the value of the
future f of the promise p.

Without waiting for the completion of the future f, the consumer future
continues to do something else.

After 2 seconds, the future f of the promise p is completed with the value
42, and the callback (foreach) is executed.

After 3 seconds, the callback is done consuming the value 42.
SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 20 / 28

Promise
The method completeWith can be used to complete a promise p with
another future f (i.e., p.completeWith(f)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {

Thread.sleep(2_000)
println("Done producing.")
42

}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something
else before producing the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 21 / 28

Promise
The method completeWith can be used to complete a promise p with
another future f (i.e., p.completeWith(f)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {

Thread.sleep(2_000)
println("Done producing.")
42

}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something
else before producing the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 21 / 28

Promise
The method completeWith can be used to complete a promise p with
another future f (i.e., p.completeWith(f)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {

Thread.sleep(2_000)
println("Done producing.")
42

}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something
else before producing the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 21 / 28

Promise
The method completeWith can be used to complete a promise p with
another future f (i.e., p.completeWith(f)).

val producer = Future {
println("Producing...")
val intFuture: Future[Int] = Future {

Thread.sleep(2_000)
println("Done producing.")
42

}
p.completeWith(intFuture)
println("Producer do something else...")

}

The above code is almost equivalent to the previous code.

However, the only difference is that the producer future does something
else before producing the value 42.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 21 / 28

Contents

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 22 / 28

Parallel Collection
We can use parallel collections1 to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %% "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(1, 2, 3, 4, 5)

1https://github.com/scala/scala-parallel-collections
SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 23 / 28

https://github.com/scala/scala-parallel-collections

Parallel Collection
We can use parallel collections1 to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %% "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(1, 2, 3, 4, 5)

1https://github.com/scala/scala-parallel-collections
SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 23 / 28

https://github.com/scala/scala-parallel-collections

Parallel Collection
We can use parallel collections1 to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %% "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(1, 2, 3, 4, 5)

1https://github.com/scala/scala-parallel-collections
SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 23 / 28

https://github.com/scala/scala-parallel-collections

Parallel Collection
We can use parallel collections1 to perform operations in parallel.

However, since it is an external library, we need to install it in build.sbt:

libraryDependencies +=
"org.scala-lang.modules" %% "scala-parallel-collections" % "<version>"

And, we need to import the following to use parallel collections:

import scala.collection.parallel.CollectionConverters.*

Then, we can freely convert a collection to the corresponding parallel
collection using the par method:

List(1, 2, 3, 4, 5).par // A parallel collection of List(1, 2, 3, 4, 5)

1https://github.com/scala/scala-parallel-collections
SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 23 / 28

https://github.com/scala/scala-parallel-collections

Parallel Collection
For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)
list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).toList // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 24 / 28

Parallel Collection
For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)
list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).toList // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 24 / 28

Parallel Collection
For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)
list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).toList // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 24 / 28

Parallel Collection
For example, consider the following code:

def slowInc(x: Int): Int = { Thread.sleep(1_000); x + 1 }
val list = List(1, 2, 3, 4, 5)
list.map(slowInc) // List(2, 3, 4, 5, 6) after 5 seconds

It will take 5 seconds to complete.

However, we can convert the list to a parallel collection and perform the
slowInc operation in parallel:

list.par.map(slowInc).toList // List(2, 3, 4, 5, 6) after 1 second

It will take 1 second to complete.

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 24 / 28

Parallel Collection
Similarly, we can use other methods such as reduce or filter:

For example, we can compute the sum of the first 1,000,000 numbers in
parallel using reduce method:

(1L to 1_000_000L).toArray.par.reduce(_ + _) // 500000500000

Or, we can filter numbers divisible by 3 in parallel using filter method:

(1L to 1_000_000L).toArray.par.filter(_ % 3L == 0L).length // 333333

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 25 / 28

Parallel Collection
Similarly, we can use other methods such as reduce or filter:

For example, we can compute the sum of the first 1,000,000 numbers in
parallel using reduce method:

(1L to 1_000_000L).toArray.par.reduce(_ + _) // 500000500000

Or, we can filter numbers divisible by 3 in parallel using filter method:

(1L to 1_000_000L).toArray.par.filter(_ % 3L == 0L).length // 333333

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 25 / 28

Parallel Collection
Similarly, we can use other methods such as reduce or filter:

For example, we can compute the sum of the first 1,000,000 numbers in
parallel using reduce method:

(1L to 1_000_000L).toArray.par.reduce(_ + _) // 500000500000

Or, we can filter numbers divisible by 3 in parallel using filter method:

(1L to 1_000_000L).toArray.par.filter(_ % 3L == 0L).length // 333333

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 25 / 28

Parallel Collection
However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

• Side-effecting operations can lead to non-determinism.
• Non-associative operations can lead to non-determinism.

For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 26 / 28

Parallel Collection
However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

• Side-effecting operations can lead to non-determinism.
• Non-associative operations can lead to non-determinism.

For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 26 / 28

Parallel Collection
However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

• Side-effecting operations can lead to non-determinism.
• Non-associative operations can lead to non-determinism.

For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 26 / 28

Parallel Collection
However, we need to be careful the out-of-order behavior when using
parallel collections.

The out-of-order semantics of parallel collections can lead to the
following implications:

• Side-effecting operations can lead to non-determinism.
• Non-associative operations can lead to non-determinism.

For example, the following code is non-deterministic because of the
side-effect operation sum += i:

var sum = 0
(1 to 1_000).toArray.par.foreach { i => sum += i }
sum

The following code is also non-deterministic because of the
non-associative operation -:

(1 to 1_000).toArray.par.reduce(_ - _)

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 26 / 28

Summary

1. Futures
Callbacks
Combinators
Multiple Futures

2. Promise

3. Parallel Collection

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 27 / 28

Next Lecture
• Course Review

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 12 – Concurrent Programming June 3, 2024 28 / 28

https://plrg.korea.ac.kr

	Futures
	Callbacks
	Combinators
	Multiple Futures

	Promise
	Parallel Collection

