Lecture 2 — Testing and Documentation

SWS121: Secure Programming

Jihyeok Park

7VPLRG

2024 Spring

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

Recall ’VNPLRG

We learned basics of Scala programming in the last lecture.
® Basic Features
® Basic Data Types
® Variables
® Methods
® Recursion
¢ Algebraic Data Types (ADTs)
® Product Types — Case Classes
® Algebraic Data Types (ADTs) — Enumerations
® Pattern Matching
® Methods

e First-Class Functions
® |[mmutable Collections
® | ists
® Options and Pairs

® Maps and Sets
® For Comprehensions

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 2/35

Contents ’VNPLRG

1. Simple Build Tool (sbt) for Scala
Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc — Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest — Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 3/35

Contents ’VNPLRG

1. Simple Build Tool (sbt) for Scala
Example Project
Project Structure
Building a Project
Running a Project

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 4/35

Scala Project with scalac

In Scala, a library or a program is compiled using the Scala compiler,

scalac, as documented in Scala 3 Book.!

’VNPLRG

‘@main def hello: Unit = println("Hello, world!") /* hello.scala */

$

H H H B H H e

©“

scalac hello.scala

1s -1
hello$package$.class
hello$package.class
hello$package.tasty
hello.class
hello.scala
hello.tasty

scala hello
Hello, world!

How to handle multiple files, dependencies, testing, etc.?

'https://docs.scala-lang.org/scala3/book/taste-hello-world.html

SWS121 @ Korea University

Lecture 2 — Testing and Documentation

March 18, 2024

ES

https://docs.scala-lang.org/scala3/book/taste-hello-world.html

Simple Build Tool (sbt) ’NPLRG

S

® sbt is a simple build tool for Scala and Java projects. It is similar to
Maven or Ant, but it is designed for Scala.

® Rather than using scalac directly, sbt provides a more convenient
way to compile, run, test, document, and package Scala programs.

® sbt supports a domain-specific language (DSL) called build.sbt
DSL for defining the build process of a Scala project.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

https://www.scala-sbt.org
https://www.scala-sbt.org
https://www.scala-sbt.org

Example Project IPLRG

Here is a simple example sbt project that includes a simple arithmetic

expression Expr and a tree Tree data structure:

https://github.com/ku-plrg-classroom/scala-example

You can clone the project using the following command:

$ git clone https://github.com/ku-plrg-classroom/scala-example.git

Please check you have JDK 8 or later and sbt installed on your system.

$ java -version
java version "21.0.2" 2024-01-16 LTS

$ sbt --script-version
#1.9.4

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

7/35

https://www.scala-sbt.org
https://github.com/ku-plrg-classroom/scala-example
https://www.scala-sbt.org

Project Structure ’VPLRG

A typical sbt project has the following structure:

build.sbt # build definition
project
build.properties # sbt version
plugins.sbt # sbt plugins
src/
main/
resources/ # resources
scala/ # main Scala sources
test/
scala/ # test Scala sources

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 8/35

https://www.scala-sbt.org

Project Structure — build. sbt ’VNPLRG

We can define the build process of the project in the build.sbt file:

ThisBuild / scalaVersion := "3.3.3"
ThisBuild / scalacOptions ++= Seq(...)
lazy val root = project
.in(file("."))
.settings(
name := "scala-example",

libraryDependencies += "org.scalatest" %)% "scalatest" % "3.2.15" ¥
Test,

coverageEnabled := true,

We can freely utilize Java (JVM-based) libraries in Scala projects:

libraryDependencies += "org.scalatest" %} "scalatest" % "3.2.15" % Test,

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 9/35

Project Structure — project ’VPLRG

The project directory contains the following files:

project/
build.properties # sbt version
plugins.sbt # sbt plugins

The example project uses 1.9.9 version of sbt:

sbt.version=1.9.9

and uses the following plugins:

addSbtPlugin("org.wartremover" 7 "sbt-wartremover" % "3.1.6")
addSbtPlugin("org.scoverage" % "sbt-scoverage" % "2.0.11")

® yartremover is used to block non-funcional Scala features.

® scoverage is used to measure code coverage.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 10/35

https://www.scala-sbt.org

Project Structure — Main and Test Sources MPLRG

The example project has three main Scala files:
® App.scala — Main Application
® Expr.scala — Arithmetic Expression
® Tree.scala — Tree Data Structure
and two test Scala files:
® ExprSpec.scala — Test Suite for Arithmetic Expression

® TreeSuite.scala — Test Suite for Tree Data Structure

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 11/35

Building a Project 7NPLRG

You can build the project using the following command:

$ sbt compile
[success] Total time: O s, completed ...

It is better to use the following command to start the sbt shell:

$ sbt

[info]

sbt:scala-example> compile

[info]

[success] Total time: O s, completed ...
sbt:scala-example>

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 12/35

https://www.scala-sbt.org

Running a Project 7NPLRG
In general, you can run the project by using the sbt run command:

$ sbt run
Hello, world!

In addition, you can interactively explore the project with the console
(Scala REPL) by running the following command:

$ sbt console

Then, it shows the following prompt:

scala> import kuplrg.{ Expr, Tree }, import Expr.*

scala> val expr: Expr = Mul(Num(2), Add(Var("x"), Var("y")))
val expr: kuplrg.Expr = Mul(Num(2),Add(Var(x),Var(y)))

scala> expr.eval(Map("x" -> 3, "y" -> 5), 0)
val resl: Int = 16

scala>

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 13/35

Contents ’VNPLRG

2. Scala Documentation
scaladoc — Scala Documentation Tool
Generating Documentation
Writing Documentation

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 14 /35

Why Documentation for Secure Programming? ") PLRG

® Documentation is an essential part of secure programming.

® |t helps to correctly understand the code, maintain the code, and
reuse the code.

® |t helps to secure the code by preventing security vulnerabilities
because it helps to comply with security standards and
regulations.

¢ |t guides to automatically test or analyze the code for security
vulnerabilities in an effective and systematic way.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

scaladoc — Scala Documentation Tool 7V PLRG

® However, it is labor-intensive and difficult to write and maintain
documentation manually without any tool.

a Scaladoc

® |et's use scaladoc to automatically generate documentation
from comments in Scala source code.

® |t provides similar features to other comment based documentation
systems like javadoc, jekyll, docusaurus, etc.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 16 /35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html

Generating Documentation 7VPLRG

To generate the documentation, you can run the following command:

$ sbt doc

Then, the documentation will be generated in the directory:
target/scala-3.3.3/api.

Please enter the directory and run the server to see the documentation
using python3:

$ cd target/scala-3.3.3/api
$ python3 -m http.server 8080

Then, you can open the following URL in your web browser:

http://localhost:8080

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 17 /35

http://localhost:8080

PLRG

Generating Documentation

root Qa ¢
API Inherited v Filter by any phrase
v © kuplrg In this article
def eval(ass: Map[String, Int], default:
~ © Expr Int): Int Members list
Mot Evaluates the expression with the given variable Value members

assignments.
Inherited methods

Var
Add def has(name: String): Boolean
- Checks if the expression has a given variable.
ui
> © Tree def productElementNames:
O D Iterator[String]

def productIterator: Iterator[Any]

def show: String
Generates a string representation of the expression.

def vars: Set[String]

Generated with [scaladoc

e

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 18 /35

Writing Documentation 7VPLRG

You can write documentation using comments in the Scala source code
for scaladoc with the following tags:
¢ Class/Method specific tags
® Q@constructor — constructor
® Qreturn — which value is returned
® @throws — which exceptions are thrown
® Q@param — parameters
® Q@tparam — type parameters
® Usage tags
® @see — reference to other sources of information

® @note — note for pre- or post- conditions
® Qexample — example code

e Other tags

® @since — when the feature was added
® Q@deprecated — deprecated feature

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 19/35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html

Writing Documentation 7VPLRG

You can use HTML tags or markup in the comments for scaladoc:

“monospace”
''italic text''
''"'bold text'''
__underline__
“superscript”
, ,subscript, ,
[[entity link]],
e.g. [[scala.collection.Seq]]
[[https://external.link External Link]],
e.g. [[https://scala-lang.org Scala Language Sitel]

There are other formatting supported by scaladoc:
® paragraphs — started with one (or more) blank lines.
e code blocks — enclosed by {{{ and }}}.
¢ table — please refer to here.

e list blocks — “-" for unordered list and “1." for ordered list.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 20/35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
https://scala-lang.org/blog/2018/10/04/scaladoc-tables.html

Contents ’VNPLRG

3. Scala Test Framework
Why Software Testing?
ScalaTest — Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 21/35

Errors in Safety-Critical Software ’MPLRG

Unexpected faults in safety-critical software cause serious problems:

Cruise recalls all its driverless c:

June 4, 1996: Ariane-5 explodes Knight Capital Says Trading Glitch Cost It | Heathrow Airport apologises
after lift off B s o 3 for IT failure disruption

Runaway Trades Spread Turmoil Across Wall St

Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2023)

Then, how can we prevent such software faults?

Can we automatically check whether a program does not have any
software faults?

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 22/35

Detecting Software Faults 7NPLRG

How do we know whether a software is correct?

Empiricists — Francis Bacon Rationalists — René Descartes
It is correct because | TESTED It is correct because | formally
several times but no error was found! PROVED that no error exists!

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 23/35

Why Software Testing? ’VPLRG

® Imagine you have two choices when boarding a airplane:

® While an airplane A has never been proven to have any run-time
errors, it has been tested with a finite number of test flights.

® While an airplane B has been formally verified to have no run-time
errors, it has never been tested in the real world.

® Some people may choose A, while others may choose B.

® |n addition, some properties only can be tested but not verified
(e.g., energy consumption, usability, etc.).

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

ScalaTest — Test Framework for Scala 7V PLRG

® ScalaTest is a test framework for Scala and Java Virtual Machine
(JVM) that is designed to be scalable and flexible.

® |t is designed to be easy to learn and easy to use.

® |t is designed to be easy to integrate with other tools and libraries.

® |t supports different styles of testing (e.g., FunSuite, FlatSpec,
etc.).

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

https://www.scalatest.org

Running Tests ") PLRG

We can test the project with the following command on sbt:

sbt test

[info] TreeSuite:

[info] - The “has” should return if the tree has the value

[info] - The “map” should map the tree with the given function
[info] ...

[info] ExprSpec:

[info] “vars”

[info] - should returns the set of variables in the expression
[info] ~show’

[info] - should generate a string representation of the expression
[info] ...

[info] Run completed in 107 milliseconds.

[info] Total number of tests run: 8

[info] Suites: completed 2, aborted O

[info] Tests: succeeded 8, failed O, canceled O, ignored O, pending O
[info] All tests passed.

[success] Total time: O s, completed ...

H O H H K H O HHHE R HHE R H RS

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

https://www.scala-sbt.org

Writing Tests — FlatSpec Style ") PLRG

For example, we can define a test suite for the arithmetic expression
(Expr) using FlatSpec style as follows:

import org.scalatest.flatspec.AnyFlatSpec

class ExprSpec extends AnyFlatSpec {
import Expr.*

/]2 % (x +y)
val expr3: Expr = Mul(Num(2), Add(Var("x"), Var("y")))

"“vars™" should "returns the set of variables in the expression" in {

assert(expr3.vars == Set("x", "y"))

}

"“show™" should "generate a string representation of the expression"
in {
assert(expr3.show == "2 * (x + y)")

}

}

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 27/35

Writing Tests — FunSuite Style 'V PLRG

Or, we can define a test suite for the tree data structure (Tree) using
FunSuite style as follows:

import org.scalatest.funsuite.AnyFunSuite

class TreeSuite extends AnyFunSuite {
import Tree.*
/1
/7 7\
// 2 3
val tree2: Tree = Node(1l, List(Leaf(3), Leaf(2)))

test ("The “has” should return if the tree has the value") {
assert(tree2.has(8) == false)
}

test("The “map” should map the tree with the given function") {
assert(tree2.map(_ * 2) == Node(2, List(Leaf(6), Leaf(4))))
}
}

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

28 /35

Measuring Code Coverage 7NPLRG

e How to measure the quality of the tests?

® One possible way is to measure the code coverage of the tests.

¢ \We can measure the code coverage of the project using
scoverage, the code coverage tool for Scala.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 29/35

https://github.com/scoverage/scalac-scoverage-plugin

Measuring Code Coverage 7V PLRG

First, we need to add scoverage as a plugin in the
project/plugins.sbt file:

‘addSbtPlugin("org.scoverage” % "sbt-scoverage" % "2.0.11")

and turn on the coverage mode in the build.sbt file:

coverageEnabled := true

Then, we need to run the tests with enabled coverage:

$ sbt clean coverage test

Finally, we can generate the coverage report:

$ sbt coverageReport

and open the following file in your web browser:

<project-dir>/target/scala-3.3.3/scoverage-report/index.html

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 30/35

https://github.com/scoverage/scalac-scoverage-plugin

Measuring Code Coverage 7NPLRG

It shows the overall code coverage of the project:

All packages - 91.09% ¢ [Class ¢ Sourcefile ¢ Lines ¢ Methods ¢ Statements ¢ Invoked ¢ Coverage ¢ ¢ Branches ¢ Invoked ¢ Coverage ¢ ¢

Kuplrg 91.09% App$ App.scala 1 1 2 0 I 000% o 0 I 000%
Expr Exprscala 130 4 55 49 B 8909% 22 19 R 8636 %
Tree Treescala 190 7 44 43 . ot 15 14 B 9333 %

For example, we can see which parts are not covered by the tests:

91 *
92 * Add(Var("x"), Num(1l)) // x+1=3+1=4
93 *

94 * Mul(Num(2), Add(Var("x"), Var("y"))) // 2 * (x +y) =2 * (3 +5) =16
95 * 11}

96 */

97 def eval(ass: Map[String, Int], default: Int): Int = this match
98 case Num(n) =>n

99 case Var(x) => ass.get(x) match

100 case Some(n) => n

101 case None => default

102 case Add(l, r) => l.eval(ass, default) + r.eval(ass, default)
103 case Mul(l, r) => l.eval(ass, default) * r.eval(ass, default)

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

Real-world Example 7NPLRG

ESMeta is a framework that extracts a mechanized specification from a
given version of ECMAScript/JavaScript specification (ECMA-262)
developed using Scala and sbt.

https://github.com/es-meta/esmeta

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 32/35

https://github.com/es-meta/esmeta
https://tc39.es/ecma262/
https://www.scala-sbt.org
https://github.com/es-meta/esmeta

Summary ’VPLRG

1. Simple Build Tool (sbt) for Scala
Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc — Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest — Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024 33/35

Exercise #1 7NPLRG

® Please see this document on GitHub:

https://github.com/ku-plrg-classroom/docs/tree/main/scala-tutorial

® |t is just an exercise, and it is NOT included in your grade.

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

https://github.com/ku-plrg-classroom/docs/tree/main/scala-tutorial

Next Lecture ’VNPLRG

® (Classes, Traits, and Objects

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 2 — Testing and Documentation March 18, 2024

https://plrg.korea.ac.kr

	Simple Build Tool (sbt) for Scala
	Example Project
	Project Structure
	Building a Project
	Running a Project

	Scala Documentation
	scaladoc – Scala Documentation Tool
	Generating Documentation
	Writing Documentation

	Scala Test Framework
	Why Software Testing?
	ScalaTest – Test Framework for Scala
	Running Tests
	Writing Tests
	Measuring Code Coverage

