
Lecture 2 – Testing and Documentation
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 1 / 35

Recall
We learned basics of Scala programming in the last lecture.

• Basic Features
• Basic Data Types
• Variables
• Methods
• Recursion

• Algebraic Data Types (ADTs)
• Product Types – Case Classes
• Algebraic Data Types (ADTs) – Enumerations
• Pattern Matching
• Methods

• First-Class Functions
• Immutable Collections

• Lists
• Options and Pairs
• Maps and Sets
• For Comprehensions

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 2 / 35

Contents
1. Simple Build Tool (sbt) for Scala

Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc – Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest – Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 3 / 35

Contents
1. Simple Build Tool (sbt) for Scala

Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc – Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest – Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 4 / 35

Scala Project with scalac
In Scala, a library or a program is compiled using the Scala compiler,
scalac, as documented in Scala 3 Book.1

@main def hello: Unit = println("Hello, world!") /* hello.scala */

$ scalac hello.scala

$ ls -1
hello$package$.class
hello$package.class
hello$package.tasty
hello.class
hello.scala
hello.tasty

$ scala hello
Hello, world!

How to handle multiple files, dependencies, testing, etc.?
1https://docs.scala-lang.org/scala3/book/taste-hello-world.html
SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 5 / 35

https://docs.scala-lang.org/scala3/book/taste-hello-world.html

Simple Build Tool (sbt)

• sbt is a simple build tool for Scala and Java projects. It is similar to
Maven or Ant, but it is designed for Scala.

• Rather than using scalac directly, sbt provides a more convenient
way to compile, run, test, document, and package Scala programs.

• sbt supports a domain-specific language (DSL) called build.sbt
DSL for defining the build process of a Scala project.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 6 / 35

https://www.scala-sbt.org
https://www.scala-sbt.org
https://www.scala-sbt.org

Example Project
Here is a simple example sbt project that includes a simple arithmetic
expression Expr and a tree Tree data structure:

https://github.com/ku-plrg-classroom/scala-example

You can clone the project using the following command:

$ git clone https://github.com/ku-plrg-classroom/scala-example.git

Please check you have JDK 8 or later and sbt installed on your system.

$ java -version
java version "21.0.2" 2024-01-16 LTS

$ sbt --script-version
1.9.4

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 7 / 35

https://www.scala-sbt.org
https://github.com/ku-plrg-classroom/scala-example
https://www.scala-sbt.org

Project Structure
A typical sbt project has the following structure:

build.sbt # build definition
project

build.properties # sbt version
plugins.sbt # sbt plugins

src/
main/

resources/ # resources
scala/ # main Scala sources

test/
scala/ # test Scala sources

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 8 / 35

https://www.scala-sbt.org

Project Structure – build.sbt
We can define the build process of the project in the build.sbt file:

ThisBuild / scalaVersion := "3.3.3"
ThisBuild / scalacOptions ++= Seq(...)
lazy val root = project

.in(file("."))

.settings(
name := "scala-example",
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.15" %
Test,
coverageEnabled := true,
...

)
...

We can freely utilize Java (JVM-based) libraries in Scala projects:

libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.15" % Test,

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 9 / 35

Project Structure – project
The project directory contains the following files:

project/
build.properties # sbt version
plugins.sbt # sbt plugins

The example project uses 1.9.9 version of sbt:

sbt.version=1.9.9

and uses the following plugins:

addSbtPlugin("org.wartremover" % "sbt-wartremover" % "3.1.6")
addSbtPlugin("org.scoverage" % "sbt-scoverage" % "2.0.11")

• wartremover is used to block non-funcional Scala features.
• scoverage is used to measure code coverage.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 10 / 35

https://www.scala-sbt.org

Project Structure – Main and Test Sources
The example project has three main Scala files:

• App.scala – Main Application

• Expr.scala – Arithmetic Expression

• Tree.scala – Tree Data Structure

and two test Scala files:

• ExprSpec.scala – Test Suite for Arithmetic Expression

• TreeSuite.scala – Test Suite for Tree Data Structure

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 11 / 35

Building a Project
You can build the project using the following command:

$ sbt compile
[success] Total time: 0 s, completed ...

It is better to use the following command to start the sbt shell:

$ sbt
[info] ...
sbt:scala-example> compile
[info] ...
[success] Total time: 0 s, completed ...
sbt:scala-example>

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 12 / 35

https://www.scala-sbt.org

Running a Project
In general, you can run the project by using the sbt run command:

$ sbt run
Hello, world!

In addition, you can interactively explore the project with the console
(Scala REPL) by running the following command:

$ sbt console

Then, it shows the following prompt:

scala> import kuplrg.{ Expr, Tree }, import Expr.*

scala> val expr: Expr = Mul(Num(2), Add(Var("x"), Var("y")))
val expr: kuplrg.Expr = Mul(Num(2),Add(Var(x),Var(y)))

scala> expr.eval(Map("x" -> 3, "y" -> 5), 0)
val res1: Int = 16

scala>

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 13 / 35

Contents
1. Simple Build Tool (sbt) for Scala

Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc – Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest – Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 14 / 35

Why Documentation for Secure Programming?
• Documentation is an essential part of secure programming.

• It helps to correctly understand the code, maintain the code, and
reuse the code.

• It helps to secure the code by preventing security vulnerabilities
because it helps to comply with security standards and
regulations.

• It guides to automatically test or analyze the code for security
vulnerabilities in an effective and systematic way.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 15 / 35

scaladoc – Scala Documentation Tool
• However, it is labor-intensive and difficult to write and maintain

documentation manually without any tool.

• Let’s use scaladoc to automatically generate documentation
from comments in Scala source code.

• It provides similar features to other comment based documentation
systems like javadoc, jekyll, docusaurus, etc.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 16 / 35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html

Generating Documentation
To generate the documentation, you can run the following command:

$ sbt doc

Then, the documentation will be generated in the directory:
target/scala-3.3.3/api.

Please enter the directory and run the server to see the documentation
using python3:

$ cd target/scala-3.3.3/api
$ python3 -m http.server 8080

Then, you can open the following URL in your web browser:

http://localhost:8080

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 17 / 35

http://localhost:8080

Generating Documentation

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 18 / 35

Writing Documentation
You can write documentation using comments in the Scala source code
for scaladoc with the following tags:

• Class/Method specific tags
• @constructor – constructor
• @return – which value is returned
• @throws – which exceptions are thrown
• @param – parameters
• @tparam – type parameters

• Usage tags
• @see – reference to other sources of information
• @note – note for pre- or post- conditions
• @example – example code

• Other tags
• @since – when the feature was added
• @deprecated – deprecated feature

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 19 / 35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html

Writing Documentation
You can use HTML tags or markup in the comments for scaladoc:

`monospace`
''italic text''
'''bold text'''
__underline__
ˆsuperscriptˆ
,,subscript,,
[[entity link]],

e.g. [[scala.collection.Seq]]
[[https://external.link External Link]],

e.g. [[https://scala-lang.org Scala Language Site]]

There are other formatting supported by scaladoc:
• paragraphs – started with one (or more) blank lines.
• code blocks – enclosed by {{{ and }}}.
• table – please refer to here.
• list blocks – “-” for unordered list and “1.” for ordered list.
SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 20 / 35

https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
https://docs.scala-lang.org/overviews/scaladoc/for-library-authors.html
https://scala-lang.org/blog/2018/10/04/scaladoc-tables.html

Contents
1. Simple Build Tool (sbt) for Scala

Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc – Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest – Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 21 / 35

Errors in Safety-Critical Software
Unexpected faults in safety-critical software cause serious problems:

Rocket Financial Airport Auto. Vehicle
(1996) (2012) (2020) (2023)

Then, how can we prevent such software faults?

Can we automatically check whether a program does not have any
software faults?

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 22 / 35

Detecting Software Faults
How do we know whether a software is correct?

Empiricists – Francis Bacon

It is correct because I TESTED
several times but no error was found!

vs.

Rationalists – René Descartes

It is correct because I formally
PROVED that no error exists!

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 23 / 35

Why Software Testing?

• Imagine you have two choices when boarding a airplane:
• While an airplane A has never been proven to have any run-time

errors, it has been tested with a finite number of test flights.
• While an airplane B has been formally verified to have no run-time

errors, it has never been tested in the real world.

• Some people may choose A, while others may choose B.

• In addition, some properties only can be tested but not verified
(e.g., energy consumption, usability, etc.).

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 24 / 35

ScalaTest – Test Framework for Scala
• ScalaTest is a test framework for Scala and Java Virtual Machine

(JVM) that is designed to be scalable and flexible.

• It is designed to be easy to learn and easy to use.

• It is designed to be easy to integrate with other tools and libraries.

• It supports different styles of testing (e.g., FunSuite, FlatSpec,
etc.).

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 25 / 35

https://www.scalatest.org

Running Tests
We can test the project with the following command on sbt:

$ sbt test
[info] TreeSuite:
[info] - The `has` should return if the tree has the value
[info] - The `map` should map the tree with the given function
[info] ...
[info] ExprSpec:
[info] `vars`
[info] - should returns the set of variables in the expression
[info] `show`
[info] - should generate a string representation of the expression
[info] ...
[info] Run completed in 107 milliseconds.
[info] Total number of tests run: 8
[info] Suites: completed 2, aborted 0
[info] Tests: succeeded 8, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[success] Total time: 0 s, completed ...

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 26 / 35

https://www.scala-sbt.org

Writing Tests – FlatSpec Style
For example, we can define a test suite for the arithmetic expression
(Expr) using FlatSpec style as follows:

import org.scalatest.flatspec.AnyFlatSpec

class ExprSpec extends AnyFlatSpec {
import Expr.*

// 2 * (x + y)
val expr3: Expr = Mul(Num(2), Add(Var("x"), Var("y")))

"`vars`" should "returns the set of variables in the expression" in {
assert(expr3.vars == Set("x", "y"))

}
"`show`" should "generate a string representation of the expression"

in {
assert(expr3.show == "2 * (x + y)")

}
}

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 27 / 35

Writing Tests – FunSuite Style
Or, we can define a test suite for the tree data structure (Tree) using
FunSuite style as follows:

import org.scalatest.funsuite.AnyFunSuite

class TreeSuite extends AnyFunSuite {
import Tree.*
// 1
// / \
// 2 3
val tree2: Tree = Node(1, List(Leaf(3), Leaf(2)))

test("The `has` should return if the tree has the value") {
assert(tree2.has(8) == false)

}

test("The `map` should map the tree with the given function") {
assert(tree2.map(_ * 2) == Node(2, List(Leaf(6), Leaf(4))))

}
}

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 28 / 35

Measuring Code Coverage
• How to measure the quality of the tests?

• One possible way is to measure the code coverage of the tests.

• We can measure the code coverage of the project using
scoverage, the code coverage tool for Scala.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 29 / 35

https://github.com/scoverage/scalac-scoverage-plugin

Measuring Code Coverage
First, we need to add scoverage as a plugin in the
project/plugins.sbt file:

addSbtPlugin("org.scoverage" % "sbt-scoverage" % "2.0.11")

and turn on the coverage mode in the build.sbt file:

coverageEnabled := true

Then, we need to run the tests with enabled coverage:

$ sbt clean coverage test

Finally, we can generate the coverage report:

$ sbt coverageReport

and open the following file in your web browser:

<project-dir>/target/scala-3.3.3/scoverage-report/index.html

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 30 / 35

https://github.com/scoverage/scalac-scoverage-plugin

Measuring Code Coverage
It shows the overall code coverage of the project:

For example, we can see which parts are not covered by the tests:

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 31 / 35

Real-world Example

ESMeta is a framework that extracts a mechanized specification from a
given version of ECMAScript/JavaScript specification (ECMA-262)
developed using Scala and sbt.

https://github.com/es-meta/esmeta

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 32 / 35

https://github.com/es-meta/esmeta
https://tc39.es/ecma262/
https://www.scala-sbt.org
https://github.com/es-meta/esmeta

Summary
1. Simple Build Tool (sbt) for Scala

Example Project
Project Structure
Building a Project
Running a Project

2. Scala Documentation
scaladoc – Scala Documentation Tool
Generating Documentation
Writing Documentation

3. Scala Test Framework
Why Software Testing?
ScalaTest – Test Framework for Scala
Running Tests
Writing Tests
Measuring Code Coverage

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 33 / 35

Exercise #1
• Please see this document on GitHub:

https://github.com/ku-plrg-classroom/docs/tree/main/scala-tutorial

• It is just an exercise, and it is NOT included in your grade.

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 34 / 35

https://github.com/ku-plrg-classroom/docs/tree/main/scala-tutorial

Next Lecture
• Classes, Traits, and Objects

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 2 – Testing and Documentation March 18, 2024 35 / 35

https://plrg.korea.ac.kr

	Simple Build Tool (sbt) for Scala
	Example Project
	Project Structure
	Building a Project
	Running a Project

	Scala Documentation
	scaladoc – Scala Documentation Tool
	Generating Documentation
	Writing Documentation

	Scala Test Framework
	Why Software Testing?
	ScalaTest – Test Framework for Scala
	Running Tests
	Writing Tests
	Measuring Code Coverage

