
Lecture 3 – Classes, Traits, and Objects
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 1 / 32

Recall
• Simple Build Tool (sbt) for Scala

• Example Project
• Project Structure
• Building a Project
• Running a Project

• Scala Documentation
• scaladoc – Scala Documentation Tool
• Generating Documentation
• Writing Documentation

• Scala Test Framework
• Why Software Testing?
• ScalaTest – Test Framework for Scala
• Running Tests
• Writing Tests
• Measuring Code Coverage

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 2 / 32

Contents

1. Recall: Product Types and Algebraic Data Types

2. Basic Object-Oriented Programming
Constructors
Traits
Overloading and Overriding
Access Modifiers

3. Advanced Object-Oriented Programming
Objects
Companion Objects
Operators

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 3 / 32

Contents

1. Recall: Product Types and Algebraic Data Types

2. Basic Object-Oriented Programming
Constructors
Traits
Overloading and Overriding
Access Modifiers

3. Advanced Object-Oriented Programming
Objects
Companion Objects
Operators

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 4 / 32

Recall: Product Types – Case Classes
A case class defines a product type with named fields.

case class Point(x: Int, y: Int, color: String)

field name

field typetype name

// A case class `Point` having `x`, `y`, and `color` fields
// whose types are `Int`, `Int`, and `String`, respectively
case class Point(x: Int, y: Int, color: String)

// A `Point` instance whose fields: x = 3, y = 4, and color = "RED"
val point: Point = Point(3, 4, "RED")

// You can access fields using the dot operator
point.x // 3 : Int
point.color // "RED" : String

// Fields are immutable by default
point.x = 5 // Type Error: Reassignment to val `x`

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 5 / 32

Recall: Algebraic Data Types (ADTs) – Enumerations

An algebraic data type (ADT) is a sum of product types, and you can
define it using enumerations (enum) in Scala.

enum Tree:
 case Leaf(value: Int)
 case Branch(left: Tree, value: Int, right: Tree)

type name
variants

import Tree.* // Import all constructors for variants of `Tree`
val tree1: Tree = Leaf(1)
val tree2: Tree = Branch(Leaf(1), 2, Leaf(3))
val tree3: Tree = Branch(Leaf(2), 4, Branch(Leaf(3), 1, Leaf(5)))

1

2

1 3

4

2 1

3 5

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 6 / 32

Contents

1. Recall: Product Types and Algebraic Data Types

2. Basic Object-Oriented Programming
Constructors
Traits
Overloading and Overriding
Access Modifiers

3. Advanced Object-Oriented Programming
Objects
Companion Objects
Operators

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 7 / 32

Constructors – Auxiliary Constructors
A case class has a default constructor.

We can define auxiliary constructors using the this keyword.

case class Person(name: String, age: Int):
def this(firstName: String, lastName: String, age: Int) =

this(s"$firstName $lastName", age)

val p1 = Person("Jihyeok Park", 32)
val p2 = new Person("Jihyeok", "Park", 32)
p1 == p2 // true

case class Person(name: String, age: Int):
...
def this() = this("Unknown", 0)

val p3 = Person("Unknown", 0)
val p4 = new Person()
p3 == p4 // true

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 8 / 32

Constructors – Auxiliary Constructors
A case class has a default constructor.

We can define auxiliary constructors using the this keyword.

case class Person(name: String, age: Int):
def this(firstName: String, lastName: String, age: Int) =

this(s"$firstName $lastName", age)

val p1 = Person("Jihyeok Park", 32)
val p2 = new Person("Jihyeok", "Park", 32)
p1 == p2 // true

case class Person(name: String, age: Int):
...
def this() = this("Unknown", 0)

val p3 = Person("Unknown", 0)
val p4 = new Person()
p3 == p4 // true

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 8 / 32

Constructors – Auxiliary Constructors
A case class has a default constructor.

We can define auxiliary constructors using the this keyword.

case class Person(name: String, age: Int):
def this(firstName: String, lastName: String, age: Int) =

this(s"$firstName $lastName", age)

val p1 = Person("Jihyeok Park", 32)
val p2 = new Person("Jihyeok", "Park", 32)
p1 == p2 // true

case class Person(name: String, age: Int):
...
def this() = this("Unknown", 0)

val p3 = Person("Unknown", 0)
val p4 = new Person()
p3 == p4 // true

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 8 / 32

Constructors – The copy Method
Instead of constructors, we can use the copy method for a case class
instance to create a new instance with some fields modified.

val p1 = Person("Jihyeok Park", 32)
val p2 = p1.copy(age = 50)
p2 == Person("Jihyeok Park", 50) // true

val p3 = p1.copy(name = "Unknown")
p3 == Person("Unknown", 32) // true

Note that the copy method does not modify the original instance.

It creates a new instance with the specified fields modified.

And, it utilizes the named arguments feature in Scala.

def f(x: Int, y: Int): Int = x + y
f(1, 2) // 3
f(x = 1, y = 2) // 3
f(y = 2, x = 1) // 3

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 9 / 32

Constructors – The copy Method
Instead of constructors, we can use the copy method for a case class
instance to create a new instance with some fields modified.

val p1 = Person("Jihyeok Park", 32)
val p2 = p1.copy(age = 50)
p2 == Person("Jihyeok Park", 50) // true

val p3 = p1.copy(name = "Unknown")
p3 == Person("Unknown", 32) // true

Note that the copy method does not modify the original instance.

It creates a new instance with the specified fields modified.

And, it utilizes the named arguments feature in Scala.

def f(x: Int, y: Int): Int = x + y
f(1, 2) // 3
f(x = 1, y = 2) // 3
f(y = 2, x = 1) // 3

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 9 / 32

Constructors – The copy Method
Instead of constructors, we can use the copy method for a case class
instance to create a new instance with some fields modified.

val p1 = Person("Jihyeok Park", 32)
val p2 = p1.copy(age = 50)
p2 == Person("Jihyeok Park", 50) // true

val p3 = p1.copy(name = "Unknown")
p3 == Person("Unknown", 32) // true

Note that the copy method does not modify the original instance.

It creates a new instance with the specified fields modified.

And, it utilizes the named arguments feature in Scala.

def f(x: Int, y: Int): Int = x + y
f(1, 2) // 3
f(x = 1, y = 2) // 3
f(y = 2, x = 1) // 3

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 9 / 32

Constructors – The copy Method
Instead of constructors, we can use the copy method for a case class
instance to create a new instance with some fields modified.

val p1 = Person("Jihyeok Park", 32)
val p2 = p1.copy(age = 50)
p2 == Person("Jihyeok Park", 50) // true

val p3 = p1.copy(name = "Unknown")
p3 == Person("Unknown", 32) // true

Note that the copy method does not modify the original instance.

It creates a new instance with the specified fields modified.

And, it utilizes the named arguments feature in Scala.

def f(x: Int, y: Int): Int = x + y
f(1, 2) // 3
f(x = 1, y = 2) // 3
f(y = 2, x = 1) // 3

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 9 / 32

Traits
A trait is similar to an interface in Java.

It defines a type with specific abstract or concrete methods and fields.

trait HasName:
// Abstract field
val name: String
// Concrete method
def hello: String = s"Hello, $name!"

trait HasLegs:
// Abstract method
def numLegs: Int
// Concrete method
def walk: String = s"Walking on $numLegs legs"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 10 / 32

Traits – Extending and Implementing
We can define a class that extends one or more traits.

We need to implement all abstract methods and fields.

// A class `Person` extending `HasName`
case class Person(name: String, age: Int) extends HasName, HasLegs:

def numLegs: Int = 2

val p = Person("Jihyeok", 32)
p.name // "Jihyeok" -- abstract field in `HasName`
p.hello // "Hello, Jihyeok!" -- concrete method in `HasName`
p.numLegs // 2 -- abstract method in `HasLegs`
p.walk // "Walking on 2 legs" -- concrete method in `HasLegs`

The type Person is a subtype of HasName and HasLegs.

Therefore, the variable p can be a HasName or HasLegs.

val hasName: HasName = p
val hasLegs: HasLegs = p

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 11 / 32

Traits – Extending and Implementing
We can define a class that extends one or more traits.

We need to implement all abstract methods and fields.

// A class `Person` extending `HasName`
case class Person(name: String, age: Int) extends HasName, HasLegs:

def numLegs: Int = 2

val p = Person("Jihyeok", 32)
p.name // "Jihyeok" -- abstract field in `HasName`
p.hello // "Hello, Jihyeok!" -- concrete method in `HasName`
p.numLegs // 2 -- abstract method in `HasLegs`
p.walk // "Walking on 2 legs" -- concrete method in `HasLegs`

The type Person is a subtype of HasName and HasLegs.

Therefore, the variable p can be a HasName or HasLegs.

val hasName: HasName = p
val hasLegs: HasLegs = p

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 11 / 32

Traits – Extending and Implementing
We can define a class that extends one or more traits.

We need to implement all abstract methods and fields.

// A class `Person` extending `HasName`
case class Person(name: String, age: Int) extends HasName, HasLegs:

def numLegs: Int = 2

val p = Person("Jihyeok", 32)
p.name // "Jihyeok" -- abstract field in `HasName`
p.hello // "Hello, Jihyeok!" -- concrete method in `HasName`
p.numLegs // 2 -- abstract method in `HasLegs`
p.walk // "Walking on 2 legs" -- concrete method in `HasLegs`

The type Person is a subtype of HasName and HasLegs.

Therefore, the variable p can be a HasName or HasLegs.

val hasName: HasName = p
val hasLegs: HasLegs = p

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 11 / 32

Traits – Mixin Composition
We can define a new trait by mixing multiple traits.

trait HasName:
val name: String
def hello: String = s"Hello, $name!"

trait HasLegs:
def numLegs: Int
def walk: String = s"Walking on $numLegs legs"

For example, NamedTwoLegged mixes HasName and HasLegs traits.

trait NamedTwoLegged extends HasName, HasLegs:
def numLegs: Int = 2 // implement `numLegs` in `HasLegs`

case class Person(name: String, age: Int) extends NamedTwoLegged

val p = Person("Jihyeok", 32)
p.hello // "Hello, Jihyeok!"
p.walk // "Walking on 2 legs"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 12 / 32

Traits – Mixin Composition
We can define a new trait by mixing multiple traits.

trait HasName:
val name: String
def hello: String = s"Hello, $name!"

trait HasLegs:
def numLegs: Int
def walk: String = s"Walking on $numLegs legs"

For example, NamedTwoLegged mixes HasName and HasLegs traits.

trait NamedTwoLegged extends HasName, HasLegs:
def numLegs: Int = 2 // implement `numLegs` in `HasLegs`

case class Person(name: String, age: Int) extends NamedTwoLegged

val p = Person("Jihyeok", 32)
p.hello // "Hello, Jihyeok!"
p.walk // "Walking on 2 legs"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 12 / 32

Overloading
We can define multiple methods with the same name but different
numbers or types of parameters.

It is called method overloading.

case class A():

def f(x: Int): Int = x

// Overloaded method with different number of parameters
def f(x: Int, y: Int): Int = x + y

// Overloaded method with different types of parameters
def f(x: String): String = x + "!"

val a = A()
a.f(1) // 1
a.f(1, 2) // 1 + 2 = 3
a.f("Hello") // "Hello" + "!" = "Hello!"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 13 / 32

Overloading
We can define multiple methods with the same name but different
numbers or types of parameters.

It is called method overloading.

case class A():

def f(x: Int): Int = x

// Overloaded method with different number of parameters
def f(x: Int, y: Int): Int = x + y

// Overloaded method with different types of parameters
def f(x: String): String = x + "!"

val a = A()
a.f(1) // 1
a.f(1, 2) // 1 + 2 = 3
a.f("Hello") // "Hello" + "!" = "Hello!"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 13 / 32

Overriding
We can define a method in a subclass that has the same signature as a
method in its superclass using the override keyword.

It is called method overriding.

trait Animal:
def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks"

Dog().speak // "Dog barks"

We can prevent a method from being overridden by using final modifier.

trait Animal:
final def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks" // Compile Error

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 14 / 32

Overriding
We can define a method in a subclass that has the same signature as a
method in its superclass using the override keyword.

It is called method overriding.

trait Animal:
def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks"

Dog().speak // "Dog barks"

We can prevent a method from being overridden by using final modifier.

trait Animal:
final def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks" // Compile Error

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 14 / 32

Overriding
We can define a method in a subclass that has the same signature as a
method in its superclass using the override keyword.

It is called method overriding.

trait Animal:
def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks"

Dog().speak // "Dog barks"

We can prevent a method from being overridden by using final modifier.

trait Animal:
final def speak: String = "Animal speaks"

class Dog extends Animal:
override def speak: String = "Dog barks" // Compile Error

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 14 / 32

Overriding – The super Keyword
We can call the overridden method in the superclass using the super
keyword.

trait Animal:
def speak: String = "Animal speaks"

trait Dog extends Animal:
override def speak: String =

super.speak + " and Dog barks"

class Puppy extends Dog:
override def speak: String =

super.speak + " and Puppy whines"

Puppy().speak // "Animal speaks and Dog barks and Puppy whines"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 15 / 32

Overriding – The super Keyword
We can call the overridden method in the superclass using the super
keyword.

trait Animal:
def speak: String = "Animal speaks"

trait Dog extends Animal:
override def speak: String =

super.speak + " and Dog barks"

class Puppy extends Dog:
override def speak: String =

super.speak + " and Puppy whines"

Puppy().speak // "Animal speaks and Dog barks and Puppy whines"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 15 / 32

Overriding – Diamond Problem
In Java, a class can extend only one class, but it can implement multiple
interfaces (no real implementation – all abstract methods).

It is due to the diamond problem in multiple inheritance.

If Java allows multiple inheritance for classes, it may cause ambiguity:

class Parent1 {
void fun() { System.out.println("Parent1"); }

}
class Parent2 {

void fun() { System.out.println("Parent2"); }
}
class test extends Parent1, Parent2 { }

test t = new test();
t.fun(); // `fun` method is ambiguous (Parent1 or Parent2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 16 / 32

Overriding – Diamond Problem
In Java, a class can extend only one class, but it can implement multiple
interfaces (no real implementation – all abstract methods).

It is due to the diamond problem in multiple inheritance.

If Java allows multiple inheritance for classes, it may cause ambiguity:

class Parent1 {
void fun() { System.out.println("Parent1"); }

}
class Parent2 {

void fun() { System.out.println("Parent2"); }
}
class test extends Parent1, Parent2 { }

test t = new test();
t.fun(); // `fun` method is ambiguous (Parent1 or Parent2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 16 / 32

Overriding – Linearization
However, Scala solves this problem using linearization.

When a class extends multiple traits having the same concrete method,
Scala uses the rightmost trait’s method.

trait A:
def f: Int = 0

trait B extends A:
override def f: Int = 1

trait C extends A:
override def f: Int = 2

case class D() extends B, C

D().f // 2

trait A

trait B trait C

case class D

inheritance
linearization

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 17 / 32

Overriding – Linearization
However, Scala solves this problem using linearization.

When a class extends multiple traits having the same concrete method,
Scala uses the rightmost trait’s method.

trait A:
def f: Int = 0

trait B extends A:
override def f: Int = 1

trait C extends A:
override def f: Int = 2

case class D() extends B, C

D().f // 2

trait A

trait B trait C

case class D

inheritance
linearization

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 17 / 32

Overriding – Linearization
However, Scala solves this problem using linearization.

When a class extends multiple traits having the same concrete method,
Scala uses the rightmost trait’s method.

trait A:
def f: Unit = println("A")

trait B extends A:
override def f: Unit =

super.f; println("-> B")

trait C extends A:
override def f: Unit =

super.f; println("-> C")

case class D() extends B, C:
override def f: Unit =

super.f; println("-> D")

D().f // A -> C -> B -> D

trait A

trait B trait C

case class D

inheritance
linearization

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 18 / 32

Access Modifiers
Similar to Java, Scala provides access modifiers: private and
protected to restrict access to fields and methods.

trait A:
val x: Int = 0 // public by default
protected val y: Int = 1 // protected
private val z: Int = 0 // private

case class B() extends A:
def getX: Int = x // Can access `x` in `A`
def getY: Int = y // Can access `y` in `A`
def getZ: Int = z // Compile Error: `z` is private in `A`

val b = B()
b.x // 0
b.y // Compile Error: `y` is protected in `A`
b.z // Compile Error: `z` is private in `A`

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 19 / 32

Access Modifiers
Similar to Java, Scala provides access modifiers: private and
protected to restrict access to fields and methods.

trait A:
val x: Int = 0 // public by default
protected val y: Int = 1 // protected
private val z: Int = 0 // private

case class B() extends A:
def getX: Int = x // Can access `x` in `A`
def getY: Int = y // Can access `y` in `A`
def getZ: Int = z // Compile Error: `z` is private in `A`

val b = B()
b.x // 0
b.y // Compile Error: `y` is protected in `A`
b.z // Compile Error: `z` is private in `A`

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 19 / 32

Access Modifiers – Setter Syntax
Scala supports special postfix syntax _= with a field/method name for
defining setters.

case class A():
private var _x: Int = 0
private val BOUND = 100
// Getter for `_x`
def x: Int = _x
// Setter for `_x`
def x_=(newX: Int): Unit =

if (newX > BOUND) _x = BOUND
else _x = newX

val a = A()
a.x // 0
a.x = 10 // set `x` to 10
a.x // 10
a.x = 200 // set `x` to 100 because 200 > 100
a.x // 100

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 20 / 32

Access Modifiers – Setter Syntax
Scala supports special postfix syntax _= with a field/method name for
defining setters.

case class A():
private var _x: Int = 0
private val BOUND = 100
// Getter for `_x`
def x: Int = _x
// Setter for `_x`
def x_=(newX: Int): Unit =

if (newX > BOUND) _x = BOUND
else _x = newX

val a = A()
a.x // 0
a.x = 10 // set `x` to 10
a.x // 10
a.x = 200 // set `x` to 100 because 200 > 100
a.x // 100

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 20 / 32

Contents

1. Recall: Product Types and Algebraic Data Types

2. Basic Object-Oriented Programming
Constructors
Traits
Overloading and Overriding
Access Modifiers

3. Advanced Object-Oriented Programming
Objects
Companion Objects
Operators

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 21 / 32

Objects
In Scala, we can define a singleton object using the object keyword
without the definition of a class.

object StringUtils:
def truncate(s: String, length: Int): String = s.take(length)
def repeat(s: String, n: Int): String = s * n
def toUpperCase(s: String): String = s.toUpperCase

StringUtils.truncate("Hello, World!", 5) // "Hello"
StringUtils.repeat("Scala", 3) // "ScalaScalaScala"
StringUtils.toUpperCase("scala") // "SCALA"

Or, we can import the methods from the object and use them directly.

import StringUtils.*

truncate("Hello, World!", 5) // "Hello"
repeat("Scala", 3) // "ScalaScalaScala"
toUpperCase("scala") // "SCALA"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 22 / 32

Objects
In Scala, we can define a singleton object using the object keyword
without the definition of a class.

object StringUtils:
def truncate(s: String, length: Int): String = s.take(length)
def repeat(s: String, n: Int): String = s * n
def toUpperCase(s: String): String = s.toUpperCase

StringUtils.truncate("Hello, World!", 5) // "Hello"
StringUtils.repeat("Scala", 3) // "ScalaScalaScala"
StringUtils.toUpperCase("scala") // "SCALA"

Or, we can import the methods from the object and use them directly.

import StringUtils.*

truncate("Hello, World!", 5) // "Hello"
repeat("Scala", 3) // "ScalaScalaScala"
toUpperCase("scala") // "SCALA"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 22 / 32

Objects
In Scala, we can define a singleton object using the object keyword
without the definition of a class.

object StringUtils:
def truncate(s: String, length: Int): String = s.take(length)
def repeat(s: String, n: Int): String = s * n
def toUpperCase(s: String): String = s.toUpperCase

StringUtils.truncate("Hello, World!", 5) // "Hello"
StringUtils.repeat("Scala", 3) // "ScalaScalaScala"
StringUtils.toUpperCase("scala") // "SCALA"

Or, we can import the methods from the object and use them directly.

import StringUtils.*

truncate("Hello, World!", 5) // "Hello"
repeat("Scala", 3) // "ScalaScalaScala"
toUpperCase("scala") // "SCALA"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 22 / 32

Objects – The apply Method
An object can have an apply method can be invoked without the method
name.

It looks like calling an object as a function.

object Square:
def apply(x: Int): Int = x * x

val x: Int = Square(5) // 25

object Concat:
def apply(s1: String, s2: String): String = s1 + s2

val s: String = Concat("Hello, ", "World!") // "Hello, World!"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 23 / 32

Objects – The apply Method
An object can have an apply method can be invoked without the method
name.

It looks like calling an object as a function.

object Square:
def apply(x: Int): Int = x * x

val x: Int = Square(5) // 25

object Concat:
def apply(s1: String, s2: String): String = s1 + s2

val s: String = Concat("Hello, ", "World!") // "Hello, World!"

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 23 / 32

Objects – The apply Method
You can define the apply method in a class as well.

case class Adder(n: Int):
def apply(x: Int): Adder = Adder(n + x)
def calculate(x: Int): Int = x + n

val add5 = Adder(5) // Adder(5)
add5.calculate(7) // 7 + 5 = 12

val add12 = add5(7) // Adder(12)
add12.calculate(3) // 3 + 12 = 15

Adder(1)(2)(3)(4).calculate(5) // Adder(10).calculate(5) = 5 + 10 = 15

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 24 / 32

Objects – The apply Method
You can define the apply method in a class as well.

case class Adder(n: Int):
def apply(x: Int): Adder = Adder(n + x)
def calculate(x: Int): Int = x + n

val add5 = Adder(5) // Adder(5)
add5.calculate(7) // 7 + 5 = 12

val add12 = add5(7) // Adder(12)
add12.calculate(3) // 3 + 12 = 15

Adder(1)(2)(3)(4).calculate(5) // Adder(10).calculate(5) = 5 + 10 = 15

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 24 / 32

Companion Objects
Especially, a singleton object with the same name as a class is called a
companion object.

Similarly, the corresponding class is called a companion class.

The companion object can access the private fields and methods of
the companion class, and vice versa.

case class Square(side: Int):
private def area: Int = side * side
// Companion class can access private fields in companion object
def getName: String = Square.name

object Square:
private val name: String = "Square"
// Companion object can access private fields in companion class
def calculateArea(square: Square): Int = square.area

Square(5).getName // "Square"
Square.calculateArea(Square(5)) // 25

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 25 / 32

Companion Objects
Especially, a singleton object with the same name as a class is called a
companion object.

Similarly, the corresponding class is called a companion class.

The companion object can access the private fields and methods of
the companion class, and vice versa.

case class Square(side: Int):
private def area: Int = side * side
// Companion class can access private fields in companion object
def getName: String = Square.name

object Square:
private val name: String = "Square"
// Companion object can access private fields in companion class
def calculateArea(square: Square): Int = square.area

Square(5).getName // "Square"
Square.calculateArea(Square(5)) // 25

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 25 / 32

Companion Objects
Scala supports such companion objects to define static fields and methods
shared by all instances of the class like in Java.

For example, we can implement the left Java implementation in Scala
using companion objects.

class Counter {
static int count = 0;
void increment() {

count++;
}

}

Counter c1 = new Counter();
c1.increment();
Counter c2 = new Counter();
c2.increment();
c1.count; // 2

case class Counter():
def increment: Unit =

Counter.count += 1

object Counter:
var count: Int = 0

Counter().increment
Counter().increment
Counter.count // 2

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 26 / 32

Companion Objects
Scala supports such companion objects to define static fields and methods
shared by all instances of the class like in Java.

For example, we can implement the left Java implementation in Scala
using companion objects.

class Counter {
static int count = 0;
void increment() {

count++;
}

}

Counter c1 = new Counter();
c1.increment();
Counter c2 = new Counter();
c2.increment();
c1.count; // 2

case class Counter():
def increment: Unit =

Counter.count += 1

object Counter:
var count: Int = 0

Counter().increment
Counter().increment
Counter.count // 2

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 26 / 32

Companion Objects – The apply Method
Using the apply method in the companion object, we can create an
instance of the class without the new keyword.

case class Person(name: String, age: Int)

object Person:
def apply(firstName: String, lastName: String, age: Int): Person =

Person(s"$firstName $lastName", age)
def apply(): Person = Person("Unknown", 0)

val p1 = Person("Jihyeok Park", 32)
val p2 = Person("Jihyeok", "Park", 32)
p1 == p2 // true

val p3 = Person("Unknown", 0)
val p4 = Person()
p3 == p4 // true

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 27 / 32

Operators
We can define custom operators in Scala using the def keyword exactly
same as a method.

For example, we can define a + operator for a Point class.

case class Point(x: Int, y: Int):
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

val p1 = Point(1, 2)
val p2 = Point(3, 4)
p1 + p2 // Point(4, 6)

For unary operators, we need to define a method with a prefix unary_:

case class Point(x: Int, y: Int):
...
def unary_- : Point = Point(-x, -y)

val p = Point(1, 2)
-p // Point(-1, -2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 28 / 32

Operators
We can define custom operators in Scala using the def keyword exactly
same as a method.

For example, we can define a + operator for a Point class.

case class Point(x: Int, y: Int):
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

val p1 = Point(1, 2)
val p2 = Point(3, 4)
p1 + p2 // Point(4, 6)

For unary operators, we need to define a method with a prefix unary_:

case class Point(x: Int, y: Int):
...
def unary_- : Point = Point(-x, -y)

val p = Point(1, 2)
-p // Point(-1, -2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 28 / 32

Operators
We can define custom operators in Scala using the def keyword exactly
same as a method.

For example, we can define a + operator for a Point class.

case class Point(x: Int, y: Int):
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

val p1 = Point(1, 2)
val p2 = Point(3, 4)
p1 + p2 // Point(4, 6)

For unary operators, we need to define a method with a prefix unary_:

case class Point(x: Int, y: Int):
...
def unary_- : Point = Point(-x, -y)

val p = Point(1, 2)
-p // Point(-1, -2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 28 / 32

Operators – Infix Notation
We can use the infix notation also for methods taking one argument.

case class Point(x: Int, y: Int):

// Additive operator
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

// A method to find the minimum point
def min(that: Point): Point =

if (this.x <= that.x && this.y <= that.y) this
else that

val p1 = Point(1, 2)
val p2 = Point(3, 4)

// Infix notation for operators
p1 + p2 // Point(4, 6)

// Infix notation for normal methods
p1 min p2 // Point(1, 2)

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 29 / 32

Operators – Precedence
Scala has a set of operator precedence rules, and it is also applied to
custom operators.

case class Point(x: Int, y: Int):

// Additive operator
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

// Multiplicative operator
def *(k: Int): Point = Point(this.x * k, this.y * k)

// Comparison operator
def <=(that: Point): Boolean = this.x <= that.x && this.y <= that.y

val p1 = Point(1, 2)
val p2 = Point(3, 4)
val p3 = Point(7, 10)

p1 + p2 * 2 <= p3 // (p1 + (p2 * 2)) <= p3 -- true

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 30 / 32

Summary

1. Recall: Product Types and Algebraic Data Types

2. Basic Object-Oriented Programming
Constructors
Traits
Overloading and Overriding
Access Modifiers

3. Advanced Object-Oriented Programming
Objects
Companion Objects
Operators

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 31 / 32

Next Lecture
• Functional Programming

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 3 – Classes, Traits, and Objects March 25, 2024 32 / 32

https://plrg.korea.ac.kr

	Recall: Product Types and Algebraic Data Types
	Basic Object-Oriented Programming
	Constructors
	Traits
	Overloading and Overriding
	Access Modifiers

	Advanced Object-Oriented Programming
	Objects
	Companion Objects
	Operators

