Lecture 5 — Immutable Collections

SWS121: Secure Programming

Jihyeok Park

7VPLRG

2024 Spring

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Recall ’VNPLRG

® Functions

® Methods vs Functions
Eta Expansion

Recursive Functions
Tail-Call Optimization
Default Parameter Values
Nested Methods

Multiple Parameter Lists

® Pattern Matching

® Secaled Types
® Regular Expression Patterns
® Extractor Objects

¢ Functional Error Handling
® Option Type
® Try Type
® Either Type

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 2/32

Contents

1.

Recall: Basic Immutable Collections
Lists, Options, Maps, and Sets

. Why Immutable Collections?
. Collections Hierarchy

. Sequences

ArraySeq
Vector
Range
Queue

. Sets and Maps

HashSet and HashMap
TreeSet and TreeMap

. Performance Characteristics

SWS121 @ Korea University

Lecture 5 — Immutable Collections

April 8, 2024

’VNPLRG

Contents ’VNPLRG

1. Recall: Basic Immutable Collections
Lists, Options, Maps, and Sets

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Lists ’VNPLRG

Lists are immutable sequences of elements of the same type

val list: List[Int] = 3 1::2 4 :: Nil
val list2: List[Int] = 5 list
val list3: List[Int] = 6 list

list

Uist2 -1 5 || :
3 1 [F={ 2 [F=f 4 [i
Uist3 -] 6 ||

and support various methods:

list.size // 4 : Int
list.map(_ * 2) // List(6, 2, 4, 8) : List[Int]
list.filter(_ % 2 == 1) // List(3, 1) : List[Int]
list.flatMap(x => List(x, -x)) // List(3, -3, ..., 4, -4) : List[Int]
list.foldLeft(0)(_ + _) // 0+3+1+2+4=10 : Int

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 5/32

Options, Maps, and Sets ’NPLRG

We learned other basic immutable collections:
® Option[T]: represents optional values
® Map[K, V]: represents a collection of key-value pairs

® Set [T]: represents a collection of unique elements

Some (5)
Map(“one" -> 1’ "two! -> 2)
Set(1, 2, 3, 4)

val opt: Option[Int]
val map: Map[String, Int]
val set: Set[Int]

and support similar methods:

opt.size // 1 : Int

set.map(_ * 2) // Set(2, 4, 6, 8) : Set[Int]
map.filter((k, v) => v < 2) // Map("one" -> 1) : Map[String, Int]
opt.flatMap(x => Some(x * 2)) // Some(10) : Option[Int]
set.foldLeft(1) (_ * _) // 1 *x1 %2 %3 %4 =24 : Int

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 6/32

Contents ’VNPLRG

2. Why Immutable Collections?

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Why Immutable Collections? 7VNPLRG

Tl

Why we should use immutable collections?

® Thread Safety: Since immutable collections cannot be modified once
created, they are inherently thread-safe (e.g., no race conditions).

e Security: We can avoid bugs caused by unintended modifications
from external libraries or other parts of the code.

e Easier Debugging: There is no need to trace changes in the code
that might have altered the value of an immutable object.

®* Memory Efficiency: Immutable collections are more memory-efficient
as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 8/32

Contents ’VNPLRG

3. Collections Hierarchy

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Collections Hierarchy 7NPLRG

e All collection classes are found in the package scala.collection
divided into mutable and immutable collections.

e By default, Scala always picks immutable collections.

® For example, List is an alias of the following:

List // scala.collection.immutable.List

® Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

® Let's explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 10 /32

Trait Iterable ’VNPLRG

The lterable trait is the root trait of all collection classes.
It defines the following concrete methods:

Category Methods
Addition concat (++)
Map map, flatMap, collect
Conversions to, tolList, toVector, toMap, toSet, toSeq, toIndexedSeq,
toBuffer, toArray
Copying copyToArray
Size Info isEmpty, nonEmpty, size, knownSize, sizels
Element head, last, headOption, lastOption, find
Sub-collection tail, init, slice, take, drop, takeWhile, dropWhile,
filter, filterNot, withFilter
Subdivision splitAt, span, partition, partitionMap, groupBy,
groupMap, groupMapReduce
Element Tests exists, forall, count
Folds foldLeft, foldRight, reduceLeft, reduceRight
Specific Folds sum, product, min, max
String Operations | mkString, addString
View view

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 11/32

Trait Iterable ’VNPLRG

To support previous concrete methods, we need to implement the
following abstract method called iterator:

def iterator: Iterator[A]

We need to implement following abstract method for the Iterator object:

def hasNext: Boolean // Check if there is a next element available
def next(): A // Return the next element and advance iterator

For example, the headOption method is implemented as follows:

def headOption: Option[A] =
val it = iterator
if (it.hasNext) Some(it.next()) else None

Then, we can use the headOption method as follows:

Nil.headOption // None
List(1, 2, 3).headOption // Some(1)

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 12 /32

Collections Hierarchy ’VPLRG

IndexedSeq LinearSeq SortedSet SortedMap

BitSet

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Immutable Collections Hierarchy ") PLRG

s
@ @ oo
@ cdeded

N

A w @ d b

Default Implementation N @ Implemented by m

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Contents ’VNPLRG

4. Sequences
ArraySeq
Vector
Range
Queue

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Sequences 7V PLRG

oo

® IndexedSeq: A sequence of elements with efficient random access.

val seq: IndexedSeq[Int] = ArraySeq(0, 1, 2, 3, 4)
seq(3) // 3 (constant time)

® LinearSeq: A sequence of elements with efficient linear access.

val list: LinearSeq[Int] = List(0, 1, 2, 3, 4)
list.head // 0 (constant time)
list.tail // List(1, 2, 3, 4) (constant time)

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Indexed Sequence — ArraySeq ’VPLRG

ArraySeq is an indexed sequence backed by an array.
In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

(3[7]1[4][2]8]5[6]9]0]
0123456789

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 17 /32

Indexed Sequence — Vector 7NPLRG

Vector is a indexed sequence collection type that provides good
performance for all its operations.

Vectors are represented as m-wide trees. For example, a vector with
3-wide trees is shown below:

val vecl: Vector[Int] = Vector(o0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

(o]]2] [2]s]s] [e]7]e][o]ro]rr| 2

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 18 /32

Indexed Sequence — Vector 7NPLRG

[o]+]2]{a]4]s][e]7]e][o[ro]rs] |12

The indexing operation is effectively constant time because the depth of
the tree is logarithmic in the number of elements.

vecl(9) // 9

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Indexed Sequence — Vector 7NPLRG

vecl vec2

[]]

[o[+[2] [e]+]s] [e]7]e] [ofrefrr] 2] [az]ro[

The update operation is also effectively constant time because the
depth of the tree is logarithmic in the number of elements.

It is memory-efficient because it shares common parts of the tree.

val vec2 = vecl.updated(9, 42)

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 20/32

Indexed Sequence — Vector 7VPLRG

® In fact, vectors are represented as variants of 32-wide trees.’

® Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

* Five hops for vectors with up to 23° ~ 1 billion elements.

® So for all vectors of reasonable size, an element selection involves up
to b primitive array selections.

® This is why the time complexity of element access is effectively
constant time.

At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).
SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 21/32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534

Indexed Sequence — Range ’VPLRG

Range is a collection of equally spaced integers.

For example, consider the following range:

val range: Range = Range(2, 28, 3)

It represents the range starting from 2 and ending at 28 with a step of 3:
2,5,8,11,14,17,20, 23,26

We can define ranges also using the methods (to, until, and by):

0 to 10 // Range(0, 1, 2, ..., 10)
0 to 10 by 2 // Range(0, 2, 4, 6, 8, 10)
0 until 10 // Range(0, 1, 2, ..., 9)
0 until 10 by 2 // Range(0, 2, 4, 6, 8)

The time complexity of apply is constant time because we can compute
the element using the formula:

start + step X index

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 22/32

Linear Sequence — Queue ’VNPLRG

We can treat a List as a stack by using the :: operator for pop and
head/tail methods for push.

By combining two lists, we can implement a queue:

[L L[[[Jimoous[| [[]]]

® The enqueue operation is implemented by pushing the elements to
the in list.

® The dequeue operation is implemented by 1) moving the elements
from the in list to the out list only when the out list is empty and 2)
poping an element from the out list.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 23/32

Linear Sequence — Queue

7VNPLRG

val ql = Queue().enqueue(1).enqueue(2).enqueue(3)

[[[[3[2[1]in ocut| | |

val (x, q2) = ql.dequeue // x ==1

[[L [[[Jin ocut[3]2]

val g3 = g2.enqueue(4) .enqueue(5) .enqueue(6)

\ \ \ \6\5\4‘in out’3\2\

val (y, q4) = g3.dequeue /]y =2

| [| [6[5[4]in out[3] |

SWS121 @ Korea University Lecture 5 — Immutable Collections

April 8, 2024

Contents ’VNPLRG

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Sets and Maps ’VPLRG

ﬁ\\
e e

e HashSet/HashMap: A set/map of elements with no order.
® TreeSet/TreeMap: A set/map of elements with sorted order
e BitSet: A set of bits with dense packing.

® VectorMap: A map of elements with insertion order.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

HashSet and HashMap ’VPLRG

HashSet and HashMap are sets and maps of elements with no order
using a compressed hash-array mapped prefix-tree (CHAMP)z, which
is a variant of the hash-array mapped trie (HAMT).

Following shows an example of a HAMT with 32-ary nodes:

2

T
0 il

)
f

0 4

hash(A) :3210 = 010 32

> (=]
LA

hash(B) :210 =200 32

<«

hash(C) :409810 = 2 0 4 32

119
hash(C) = 3449 =210 3 L‘ ﬁ

*The CHAMP (OOPSLA 2015) data structure is a variant of the HAMT.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 27/32

https://doi.org/10.1145/2814270.2814312
https://en.wikipedia.org/wiki/Hash_array_mapped_trie

TreeSet and TreeMap ’VPLRG

TreeSet and TreeMap are sets and maps of elements with sorted order
using red-black trees.

For example, the following set is represented as a red-black tree:

val set = Set(1, 6, 8, 11, 13, 15, 17, 25, 22, 27)

SWS121 @ Korea University

Lecture 5 — Immutable Collections

April 8, 2024 28/32

Contents ’VNPLRG

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

Performance Characteristics 7V PLRG

head | tail | apply | update | prepend | append
List C C L L C L
ArraySeq C L C L L L
Vector eC eC eC eC eC eC
Queue aC aC L L L C
Range C C C - -
String C L C L L L
lookup | add | remove | min
HashSet/HashMap eC eC eC L
TreeSet/TreeMap Log Log Log Log
BitSet C L L eC3
VectorMap eC eC aC L
ListMap L L L L
where L = linear time, Log = logarithmic time, C = constant time,

eC = effectively constant time, and aC = amortized constant time.

3 Assuming bits are densely packed.

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024 30/32

Summary

1.

Recall: Basic Immutable Collections
Lists, Options, Maps, and Sets

. Why Immutable Collections?
. Collections Hierarchy

. Sequences

ArraySeq
Vector
Range
Queue

. Sets and Maps

HashSet and HashMap
TreeSet and TreeMap

. Performance Characteristics

’VNPLRG

Lecture 5 — Immutable Collections

SWS121 @ Korea University

April 8, 2024

Next Lecture ’VNPLRG

e For Comprehensions

Jihyeok Park
jihyeok _park@korea.ac.kr
https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 5 — Immutable Collections April 8, 2024

https://plrg.korea.ac.kr

	Recall: Basic Immutable Collections
	Lists, Options, Maps, and Sets

	Why Immutable Collections?
	Collections Hierarchy
	Sequences
	ArraySeq
	Vector
	Range
	Queue

	Sets and Maps
	HashSet and HashMap
	TreeSet and TreeMap

	Performance Characteristics

