
Lecture 5 – Immutable Collections
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 1 / 32



Recall
• Functions

• Methods vs Functions
• Eta Expansion
• Recursive Functions
• Tail-Call Optimization
• Default Parameter Values
• Nested Methods
• Multiple Parameter Lists

• Pattern Matching
• Sealed Types
• Regular Expression Patterns
• Extractor Objects

• Functional Error Handling
• Option Type
• Try Type
• Either Type

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 2 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 3 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 4 / 32



Lists
Lists are immutable sequences of elements of the same type

val list: List[Int] = 3 :: 1 :: 2 :: 4 :: Nil
val list2: List[Int] = 5 :: list
val list3: List[Int] = 6 :: list

6
3 1 2 4

5

list

list2

list3
Nil

and support various methods:

list.size // 4 : Int
list.map(_ * 2) // List(6, 2, 4, 8) : List[Int]
list.filter(_ % 2 == 1) // List(3, 1) : List[Int]
list.flatMap(x => List(x, -x)) // List(3, -3, ..., 4, -4) : List[Int]
list.foldLeft(0)(_ + _) // 0 + 3 + 1 + 2 + 4 = 10 : Int

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 5 / 32



Lists
Lists are immutable sequences of elements of the same type

val list: List[Int] = 3 :: 1 :: 2 :: 4 :: Nil
val list2: List[Int] = 5 :: list
val list3: List[Int] = 6 :: list

6
3 1 2 4

5

list

list2

list3
Nil

and support various methods:

list.size // 4 : Int
list.map(_ * 2) // List(6, 2, 4, 8) : List[Int]
list.filter(_ % 2 == 1) // List(3, 1) : List[Int]
list.flatMap(x => List(x, -x)) // List(3, -3, ..., 4, -4) : List[Int]
list.foldLeft(0)(_ + _) // 0 + 3 + 1 + 2 + 4 = 10 : Int

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 5 / 32



Lists
Lists are immutable sequences of elements of the same type

val list: List[Int] = 3 :: 1 :: 2 :: 4 :: Nil
val list2: List[Int] = 5 :: list
val list3: List[Int] = 6 :: list

6
3 1 2 4

5

list

list2

list3
Nil

and support various methods:

list.size // 4 : Int
list.map(_ * 2) // List(6, 2, 4, 8) : List[Int]
list.filter(_ % 2 == 1) // List(3, 1) : List[Int]
list.flatMap(x => List(x, -x)) // List(3, -3, ..., 4, -4) : List[Int]
list.foldLeft(0)(_ + _) // 0 + 3 + 1 + 2 + 4 = 10 : Int

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 5 / 32



Options, Maps, and Sets
We learned other basic immutable collections:

• Option[T]: represents optional values
• Map[K, V]: represents a collection of key-value pairs
• Set[T]: represents a collection of unique elements

val opt: Option[Int] = Some(5)
val map: Map[String, Int] = Map("one" -> 1, "two" -> 2)
val set: Set[Int] = Set(1, 2, 3, 4)

and support similar methods:

opt.size // 1 : Int
set.map(_ * 2) // Set(2, 4, 6, 8) : Set[Int]
map.filter((k, v) => v < 2) // Map("one" -> 1) : Map[String, Int]
opt.flatMap(x => Some(x * 2)) // Some(10) : Option[Int]
set.foldLeft(1)(_ * _) // 1 * 1 * 2 * 3 * 4 = 24 : Int

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 6 / 32



Options, Maps, and Sets
We learned other basic immutable collections:

• Option[T]: represents optional values
• Map[K, V]: represents a collection of key-value pairs
• Set[T]: represents a collection of unique elements

val opt: Option[Int] = Some(5)
val map: Map[String, Int] = Map("one" -> 1, "two" -> 2)
val set: Set[Int] = Set(1, 2, 3, 4)

and support similar methods:

opt.size // 1 : Int
set.map(_ * 2) // Set(2, 4, 6, 8) : Set[Int]
map.filter((k, v) => v < 2) // Map("one" -> 1) : Map[String, Int]
opt.flatMap(x => Some(x * 2)) // Some(10) : Option[Int]
set.foldLeft(1)(_ * _) // 1 * 1 * 2 * 3 * 4 = 24 : Int

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 6 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 7 / 32



Why Immutable Collections?

6
3 1 2 4

5

list

list2

list3
Nil

Why we should use immutable collections?

• Thread Safety: Since immutable collections cannot be modified once
created, they are inherently thread-safe (e.g., no race conditions).

• Security: We can avoid bugs caused by unintended modifications
from external libraries or other parts of the code.

• Easier Debugging: There is no need to trace changes in the code
that might have altered the value of an immutable object.

• Memory Efficiency: Immutable collections are more memory-efficient
as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 8 / 32



Why Immutable Collections?

6
3 1 2 4

5

list

list2

list3
Nil

Why we should use immutable collections?
• Thread Safety: Since immutable collections cannot be modified once

created, they are inherently thread-safe (e.g., no race conditions).

• Security: We can avoid bugs caused by unintended modifications
from external libraries or other parts of the code.

• Easier Debugging: There is no need to trace changes in the code
that might have altered the value of an immutable object.

• Memory Efficiency: Immutable collections are more memory-efficient
as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 8 / 32



Why Immutable Collections?

6
3 1 2 4

5

list

list2

list3
Nil

Why we should use immutable collections?
• Thread Safety: Since immutable collections cannot be modified once

created, they are inherently thread-safe (e.g., no race conditions).
• Security: We can avoid bugs caused by unintended modifications

from external libraries or other parts of the code.

• Easier Debugging: There is no need to trace changes in the code
that might have altered the value of an immutable object.

• Memory Efficiency: Immutable collections are more memory-efficient
as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 8 / 32



Why Immutable Collections?

6
3 1 2 4

5

list

list2

list3
Nil

Why we should use immutable collections?
• Thread Safety: Since immutable collections cannot be modified once

created, they are inherently thread-safe (e.g., no race conditions).
• Security: We can avoid bugs caused by unintended modifications

from external libraries or other parts of the code.
• Easier Debugging: There is no need to trace changes in the code

that might have altered the value of an immutable object.

• Memory Efficiency: Immutable collections are more memory-efficient
as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 8 / 32



Why Immutable Collections?

6
3 1 2 4

5

list

list2

list3
Nil

Why we should use immutable collections?
• Thread Safety: Since immutable collections cannot be modified once

created, they are inherently thread-safe (e.g., no race conditions).
• Security: We can avoid bugs caused by unintended modifications

from external libraries or other parts of the code.
• Easier Debugging: There is no need to trace changes in the code

that might have altered the value of an immutable object.
• Memory Efficiency: Immutable collections are more memory-efficient

as they can share common parts of their structure instead.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 8 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 9 / 32



Collections Hierarchy
• All collection classes are found in the package scala.collection

divided into mutable and immutable collections.

• By default, Scala always picks immutable collections.

• For example, List is an alias of the following:

List // scala.collection.immutable.List

• Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

• Let’s explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 10 / 32



Collections Hierarchy
• All collection classes are found in the package scala.collection

divided into mutable and immutable collections.

• By default, Scala always picks immutable collections.

• For example, List is an alias of the following:

List // scala.collection.immutable.List

• Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

• Let’s explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 10 / 32



Collections Hierarchy
• All collection classes are found in the package scala.collection

divided into mutable and immutable collections.

• By default, Scala always picks immutable collections.

• For example, List is an alias of the following:

List // scala.collection.immutable.List

• Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

• Let’s explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 10 / 32



Collections Hierarchy
• All collection classes are found in the package scala.collection

divided into mutable and immutable collections.

• By default, Scala always picks immutable collections.

• For example, List is an alias of the following:

List // scala.collection.immutable.List

• Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

• Let’s explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 10 / 32



Collections Hierarchy
• All collection classes are found in the package scala.collection

divided into mutable and immutable collections.

• By default, Scala always picks immutable collections.

• For example, List is an alias of the following:

List // scala.collection.immutable.List

• Set without a prefix refers to an immutable collection, whereas
mutable.Set refers to the mutable counterpart.

Set // scala.collection.immutable.Set
mutable.Set // scala.collection.mutable.Set

• Let’s explore the collections hierarchy in Scala.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 10 / 32



Trait Iterable
The Iterable trait is the root trait of all collection classes.

It defines the following concrete methods:
Category Methods
Addition concat (++)

Map map, flatMap, collect
Conversions to, toList, toVector, toMap, toSet, toSeq, toIndexedSeq,

toBuffer, toArray
Copying copyToArray
Size Info isEmpty, nonEmpty, size, knownSize, sizeIs
Element head, last, headOption, lastOption, find

Sub-collection tail, init, slice, take, drop, takeWhile, dropWhile,
filter, filterNot, withFilter

Subdivision splitAt, span, partition, partitionMap, groupBy,
groupMap, groupMapReduce

Element Tests exists, forall, count
Folds foldLeft, foldRight, reduceLeft, reduceRight

Specific Folds sum, product, min, max
String Operations mkString, addString

View view

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 11 / 32



Trait Iterable
The Iterable trait is the root trait of all collection classes.
It defines the following concrete methods:

Category Methods
Addition concat (++)

Map map, flatMap, collect
Conversions to, toList, toVector, toMap, toSet, toSeq, toIndexedSeq,

toBuffer, toArray
Copying copyToArray
Size Info isEmpty, nonEmpty, size, knownSize, sizeIs
Element head, last, headOption, lastOption, find

Sub-collection tail, init, slice, take, drop, takeWhile, dropWhile,
filter, filterNot, withFilter

Subdivision splitAt, span, partition, partitionMap, groupBy,
groupMap, groupMapReduce

Element Tests exists, forall, count
Folds foldLeft, foldRight, reduceLeft, reduceRight

Specific Folds sum, product, min, max
String Operations mkString, addString

View view

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 11 / 32



Trait Iterable
To support previous concrete methods, we need to implement the
following abstract method called iterator:

def iterator: Iterator[A]

We need to implement following abstract method for the Iterator object:

def hasNext: Boolean // Check if there is a next element available
def next(): A // Return the next element and advance iterator

For example, the headOption method is implemented as follows:

def headOption: Option[A] =
val it = iterator
if (it.hasNext) Some(it.next()) else None

Then, we can use the headOption method as follows:

Nil.headOption // None
List(1, 2, 3).headOption // Some(1)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 12 / 32



Trait Iterable
To support previous concrete methods, we need to implement the
following abstract method called iterator:

def iterator: Iterator[A]

We need to implement following abstract method for the Iterator object:

def hasNext: Boolean // Check if there is a next element available
def next(): A // Return the next element and advance iterator

For example, the headOption method is implemented as follows:

def headOption: Option[A] =
val it = iterator
if (it.hasNext) Some(it.next()) else None

Then, we can use the headOption method as follows:

Nil.headOption // None
List(1, 2, 3).headOption // Some(1)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 12 / 32



Trait Iterable
To support previous concrete methods, we need to implement the
following abstract method called iterator:

def iterator: Iterator[A]

We need to implement following abstract method for the Iterator object:

def hasNext: Boolean // Check if there is a next element available
def next(): A // Return the next element and advance iterator

For example, the headOption method is implemented as follows:

def headOption: Option[A] =
val it = iterator
if (it.hasNext) Some(it.next()) else None

Then, we can use the headOption method as follows:

Nil.headOption // None
List(1, 2, 3).headOption // Some(1)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 12 / 32



Trait Iterable
To support previous concrete methods, we need to implement the
following abstract method called iterator:

def iterator: Iterator[A]

We need to implement following abstract method for the Iterator object:

def hasNext: Boolean // Check if there is a next element available
def next(): A // Return the next element and advance iterator

For example, the headOption method is implemented as follows:

def headOption: Option[A] =
val it = iterator
if (it.hasNext) Some(it.next()) else None

Then, we can use the headOption method as follows:

Nil.headOption // None
List(1, 2, 3).headOption // Some(1)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 12 / 32



Collections Hierarchy

Iterable

Seq Set Map

IndexedSeq LinearSeq SortedSet SortedMap

BitSet

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 13 / 32



Immutable Collections Hierarchy

HashSet

TreeSet

ListSet HashMap

TreeMap ListMap VectorMap

Vector ArraySeq NumericRange String Range List LazyList Queue

Iterable

Set

Seq

Map

SortedSet

IndexedSeq LinearSeq

SortedMap SeqMap

BitSet

Class

Class

Class

Trait Implemented by

Trait Default Implementation

Trait via Implicit Conversion

Class

Class

Class

Trait Implemented by

Trait Default Implementation

Trait via Implicit Conversion

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 14 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 15 / 32



Sequences

Vector ArraySeq NumericRange String Range List LazyList Queue

Seq

IndexedSeq LinearSeq

• IndexedSeq: A sequence of elements with efficient random access.

val seq: IndexedSeq[Int] = ArraySeq(0, 1, 2, 3, 4)
seq(3) // 3 (constant time)

• LinearSeq: A sequence of elements with efficient linear access.

val list: LinearSeq[Int] = List(0, 1, 2, 3, 4)
list.head // 0 (constant time)
list.tail // List(1, 2, 3, 4) (constant time)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 16 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – ArraySeq
ArraySeq is an indexed sequence backed by an array.

In memory, the elements are stored in a contiguous block of memory.

Consider the following example:

val arraySeq: ArraySeq[Int] = ArraySeq(3, 7, 1, 4, 2, 8, 5, 6, 9, 0)

Then, the elements are stored as follows:

3 7 1 4 2 8 5 6 9 0
0 1 2 3 4 5 6 7 8 9

Thus, the time complexity of apply is constant time.

However, the time complexity of prepend, update, prepend, and append
is linear time because we need to copy all elements.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 17 / 32



Indexed Sequence – Vector
Vector is a indexed sequence collection type that provides good
performance for all its operations.

Vectors are represented as m-wide trees. For example, a vector with
3-wide trees is shown below:

val vec1: Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

3 4 5 6 7 8 9 10 11 120 1 2

vec1

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 18 / 32



Indexed Sequence – Vector
Vector is a indexed sequence collection type that provides good
performance for all its operations.

Vectors are represented as m-wide trees. For example, a vector with
3-wide trees is shown below:

val vec1: Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

3 4 5 6 7 8 9 10 11 120 1 2

vec1

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 18 / 32



Indexed Sequence – Vector
Vector is a indexed sequence collection type that provides good
performance for all its operations.

Vectors are represented as m-wide trees. For example, a vector with
3-wide trees is shown below:

val vec1: Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

3 4 5 6 7 8 9 10 11 120 1 2

vec1

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 18 / 32



Indexed Sequence – Vector

3 4 5 6 7 8 9 10 11 120 1 2

vec1

The indexing operation is effectively constant time because the depth of
the tree is logarithmic in the number of elements.

vec1(9) // 9

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 19 / 32



Indexed Sequence – Vector

3 4 5 6 7 8 9 10 11 120 1 2 42 10 11

vec1 vec2

The update operation is also effectively constant time because the
depth of the tree is logarithmic in the number of elements.

It is memory-efficient because it shares common parts of the tree.

val vec2 = vec1.updated(9, 42)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 20 / 32



Indexed Sequence – Vector
• In fact, vectors are represented as variants of 32-wide trees.1

• Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

• Five hops for vectors with up to 230 ≈ 1 billion elements.

• So for all vectors of reasonable size, an element selection involves up
to 5 primitive array selections.

• This is why the time complexity of element access is effectively
constant time.

1At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 21 / 32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534


Indexed Sequence – Vector
• In fact, vectors are represented as variants of 32-wide trees.1

• Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

• Five hops for vectors with up to 230 ≈ 1 billion elements.

• So for all vectors of reasonable size, an element selection involves up
to 5 primitive array selections.

• This is why the time complexity of element access is effectively
constant time.

1At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 21 / 32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534


Indexed Sequence – Vector
• In fact, vectors are represented as variants of 32-wide trees.1

• Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

• Five hops for vectors with up to 230 ≈ 1 billion elements.

• So for all vectors of reasonable size, an element selection involves up
to 5 primitive array selections.

• This is why the time complexity of element access is effectively
constant time.

1At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 21 / 32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534


Indexed Sequence – Vector
• In fact, vectors are represented as variants of 32-wide trees.1

• Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

• Five hops for vectors with up to 230 ≈ 1 billion elements.

• So for all vectors of reasonable size, an element selection involves up
to 5 primitive array selections.

• This is why the time complexity of element access is effectively
constant time.

1At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 21 / 32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534


Indexed Sequence – Vector
• In fact, vectors are represented as variants of 32-wide trees.1

• Vectors with up to 32 elements can be represented in a single node,
and vectors with up to 32 * 32 = 1024 elements can be represented
with a single indirection (hop).

• Five hops for vectors with up to 230 ≈ 1 billion elements.

• So for all vectors of reasonable size, an element selection involves up
to 5 primitive array selections.

• This is why the time complexity of element access is effectively
constant time.

1At the first time, the relaxed radix balanced (RRB) trees (ICFP 2015) were used,
but now they are replaced by the radix-balanced finger (RBF) trees (2019).

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 21 / 32

https://doi.org/10.1145/2858949.2784739
https://github.com/scala/scala/pull/8534


Indexed Sequence – Range
Range is a collection of equally spaced integers.

For example, consider the following range:

val range: Range = Range(2, 28, 3)

It represents the range starting from 2 and ending at 28 with a step of 3:
2, 5, 8, 11, 14, 17, 20, 23, 26

We can define ranges also using the methods (to, until, and by):

0 to 10 // Range(0, 1, 2, ..., 10)
0 to 10 by 2 // Range(0, 2, 4, 6, 8, 10)
0 until 10 // Range(0, 1, 2, ..., 9)
0 until 10 by 2 // Range(0, 2, 4, 6, 8)

The time complexity of apply is constant time because we can compute
the element using the formula:

start + step × index

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 22 / 32



Indexed Sequence – Range
Range is a collection of equally spaced integers.

For example, consider the following range:

val range: Range = Range(2, 28, 3)

It represents the range starting from 2 and ending at 28 with a step of 3:
2, 5, 8, 11, 14, 17, 20, 23, 26

We can define ranges also using the methods (to, until, and by):

0 to 10 // Range(0, 1, 2, ..., 10)
0 to 10 by 2 // Range(0, 2, 4, 6, 8, 10)
0 until 10 // Range(0, 1, 2, ..., 9)
0 until 10 by 2 // Range(0, 2, 4, 6, 8)

The time complexity of apply is constant time because we can compute
the element using the formula:

start + step × index

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 22 / 32



Indexed Sequence – Range
Range is a collection of equally spaced integers.

For example, consider the following range:

val range: Range = Range(2, 28, 3)

It represents the range starting from 2 and ending at 28 with a step of 3:
2, 5, 8, 11, 14, 17, 20, 23, 26

We can define ranges also using the methods (to, until, and by):

0 to 10 // Range(0, 1, 2, ..., 10)
0 to 10 by 2 // Range(0, 2, 4, 6, 8, 10)
0 until 10 // Range(0, 1, 2, ..., 9)
0 until 10 by 2 // Range(0, 2, 4, 6, 8)

The time complexity of apply is constant time because we can compute
the element using the formula:

start + step × index

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 22 / 32



Indexed Sequence – Range
Range is a collection of equally spaced integers.

For example, consider the following range:

val range: Range = Range(2, 28, 3)

It represents the range starting from 2 and ending at 28 with a step of 3:
2, 5, 8, 11, 14, 17, 20, 23, 26

We can define ranges also using the methods (to, until, and by):

0 to 10 // Range(0, 1, 2, ..., 10)
0 to 10 by 2 // Range(0, 2, 4, 6, 8, 10)
0 until 10 // Range(0, 1, 2, ..., 9)
0 until 10 by 2 // Range(0, 2, 4, 6, 8)

The time complexity of apply is constant time because we can compute
the element using the formula:

start + step × index
SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 22 / 32



Linear Sequence – Queue
We can treat a List as a stack by using the :: operator for pop and
head/tail methods for push.

By combining two lists, we can implement a queue:

in out

• The enqueue operation is implemented by pushing the elements to
the in list.

• The dequeue operation is implemented by 1) moving the elements
from the in list to the out list only when the out list is empty and 2)
poping an element from the out list.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 23 / 32



Linear Sequence – Queue
We can treat a List as a stack by using the :: operator for pop and
head/tail methods for push.

By combining two lists, we can implement a queue:

in out

• The enqueue operation is implemented by pushing the elements to
the in list.

• The dequeue operation is implemented by 1) moving the elements
from the in list to the out list only when the out list is empty and 2)
poping an element from the out list.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 23 / 32



Linear Sequence – Queue

val q1 = Queue().enqueue(1).enqueue(2).enqueue(3)

3 2 1 in out

val (x, q2) = q1.dequeue // x == 1

in out 3 2

val q3 = q2.enqueue(4).enqueue(5).enqueue(6)

6 5 4 in out 3 2

val (y, q4) = q3.dequeue // y == 2

6 5 4 in out 3

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 24 / 32



Linear Sequence – Queue

val q1 = Queue().enqueue(1).enqueue(2).enqueue(3)

3 2 1 in out

val (x, q2) = q1.dequeue // x == 1

in out 3 2

val q3 = q2.enqueue(4).enqueue(5).enqueue(6)

6 5 4 in out 3 2

val (y, q4) = q3.dequeue // y == 2

6 5 4 in out 3

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 24 / 32



Linear Sequence – Queue

val q1 = Queue().enqueue(1).enqueue(2).enqueue(3)

3 2 1 in out

val (x, q2) = q1.dequeue // x == 1

in out 3 2

val q3 = q2.enqueue(4).enqueue(5).enqueue(6)

6 5 4 in out 3 2

val (y, q4) = q3.dequeue // y == 2

6 5 4 in out 3

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 24 / 32



Linear Sequence – Queue

val q1 = Queue().enqueue(1).enqueue(2).enqueue(3)

3 2 1 in out

val (x, q2) = q1.dequeue // x == 1

in out 3 2

val q3 = q2.enqueue(4).enqueue(5).enqueue(6)

6 5 4 in out 3 2

val (y, q4) = q3.dequeue // y == 2

6 5 4 in out 3

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 24 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 25 / 32



Sets and Maps

HashSet

TreeSet

ListSet

Set

SortedSet

BitSet

HashMap

TreeMap ListMap VectorMap

Map

SortedMap SeqMap

• HashSet/HashMap: A set/map of elements with no order.

• TreeSet/TreeMap: A set/map of elements with sorted order

• BitSet: A set of bits with dense packing.

• VectorMap: A map of elements with insertion order.

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 26 / 32



HashSet and HashMap
HashSet and HashMap are sets and maps of elements with no order
using a compressed hash-array mapped prefix-tree (CHAMP)2, which
is a variant of the hash-array mapped trie (HAMT).

Following shows an example of a HAMT with 32-ary nodes:

hash(A) = 3210 = 0 1 0 32

hash(B) = 210 = 2 0 0 32

hash(C) = 409810 = 2 0 4 32

hash(C) = 3410 = 2 1 0 32

A
0

B
2

(a) A and B

A
0 2

0

B
0

C
4

(b) C

A
0 2

0
D

1

B
0

C
4

(c) D

hash(A) = 3210 = 0 1 0 . . .32

hash(B) = 210 = 2 0 0 . . .32

hash(C) = 409810 = 2 0 4 . . .32

hash(D) = 3410 = 2 1 0 . . .32

(d) hash codes in base 32

0 1
B

2
C

3
A

4 5
D

6

(e) equivalent array-based hash set

Figure 1. Inserting three integers into a HAMT-based set (1a, 1b, and 1c), on basis of their hashes (1d). Figure 1e shows an
equivalent and collision-free array-based hash set, with prime number table size 7 and load factor of 75 %.

in the left top corner of each node refer to the positions of
elements in an imaginary sparse array. This array is actually
implemented as a 32-bit bitmap and a completely filled array
with length equal to the node’s arity. To change a HAMT set
into a map, a common method is to double the size of the
array and store references to each value next to each key.

Figure 1e illustrates the same data stored in a more
commonly known data structure, an array-based hashtable
with table size 7 and load factor of 75 %. The buckets
assigned to elements are calculated by hashcode mod 7.
Comparing these two figures we highlight the following
inherent drawbacks of HAMTs against array-based hashtables:

Memory overhead: Each internal trie node adds an over-
head over a direct array-based encoding, so finding a small
representation for internal nodes is crucial. On the other
hand, HAMTs do not need expensive table resizing and do
not waste (much) space on null references.

Degeneration on delete: Any delete operations can cause a
HAMT to deviate from its most compact representation,
leading to superfluous internal nodes harming cache local-
ity, adding indirections for lookup, insertion and deletion,
and increasing memory size. Delete on most hashtable
implementations is a lot less influential.

Non-locality slows down iteration: When iterating over all
elements, a hashtable benefits from locality by linearly
scanning through a continuous array. A HAMT, in com-
parison, must perform a depth-first in-order traversal over
a complex object graph (going up and down), which in-
creases the chance of cache misses.

Equality is punished twice: While iterating over the one
HAMT and looking up elements in the other, the non-
locality and a possibly degenerate structure make equality
checking an expensive operation.

2.2 Mutable and Immutable Update Semantics
HAMTs are suitable to implement data structures with mutable
and immutable update semantics. The two variants differ in
how and when nodes have to be reallocated. Mutable HAMTs
reallocate a node if and only if the node’s arity changes [3].
Otherwise, values or sub-node references are updated in-

A
0 2

0
D

1

B
0

C
4

(a) Internal

0 2

A
0 1

0 4
D

B C

(b) Leaf

Figure 2. HAMT-based sets with values in internal nodes
versus values at the leaves only.

place without reallocation. In contrast to mutable HAMTs,
immutable HAMTs perform path-copying on updates [22, 27]:
the edited node and all its parent nodes are reallocated. The
resulting new root node satisfies the immutability property
by resembling the updated path-copied branch and, for the
remainder, references to unmodified branches.

2.3 Memory Layouts and Hash Code Memoization
Figure 2 illustrates the two principle choices for a HAMT’s
memory layout: storing values next to sub-nodes directly in
internal nodes, as opposed to storing them at the leaf level.

The former approach originates from Bagwell [3], it
increases locality and saves space over the latter. Because
a HAMT encodes the prefixes of hash codes implicitly in its
tree structure, it can avoid storing full 32-bit hash codes. As
a result, this design yields a very low memory footprint at the
potential cost of increased runtimes of update operations.

The latter approach stores elements in leaf nodes, sepa-
rated from inner prefix tree nodes. While leaf nodes increase
the data structure’s memory footprint, they enable storage
of additional information along the elements. Scala for ex-
ample memoizes the hash codes of elements inside the leafs.
Memoized hash codes consequently enable fast failing on
negative lookups by first comparing hash codes, and avoid
recalculation of hash codes upon prefix expansion.

785

2The CHAMP (OOPSLA 2015) data structure is a variant of the HAMT.
SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 27 / 32

https://doi.org/10.1145/2814270.2814312
https://en.wikipedia.org/wiki/Hash_array_mapped_trie


HashSet and HashMap
HashSet and HashMap are sets and maps of elements with no order
using a compressed hash-array mapped prefix-tree (CHAMP)2, which
is a variant of the hash-array mapped trie (HAMT).

Following shows an example of a HAMT with 32-ary nodes:

hash(A) = 3210 = 0 1 0 32

hash(B) = 210 = 2 0 0 32

hash(C) = 409810 = 2 0 4 32

hash(C) = 3410 = 2 1 0 32

A
0

B
2

(a) A and B

A
0 2

0

B
0

C
4

(b) C

A
0 2

0
D

1

B
0

C
4

(c) D

hash(A) = 3210 = 0 1 0 . . .32

hash(B) = 210 = 2 0 0 . . .32

hash(C) = 409810 = 2 0 4 . . .32

hash(D) = 3410 = 2 1 0 . . .32

(d) hash codes in base 32

0 1
B

2
C

3
A

4 5
D

6

(e) equivalent array-based hash set

Figure 1. Inserting three integers into a HAMT-based set (1a, 1b, and 1c), on basis of their hashes (1d). Figure 1e shows an
equivalent and collision-free array-based hash set, with prime number table size 7 and load factor of 75 %.

in the left top corner of each node refer to the positions of
elements in an imaginary sparse array. This array is actually
implemented as a 32-bit bitmap and a completely filled array
with length equal to the node’s arity. To change a HAMT set
into a map, a common method is to double the size of the
array and store references to each value next to each key.

Figure 1e illustrates the same data stored in a more
commonly known data structure, an array-based hashtable
with table size 7 and load factor of 75 %. The buckets
assigned to elements are calculated by hashcode mod 7.
Comparing these two figures we highlight the following
inherent drawbacks of HAMTs against array-based hashtables:

Memory overhead: Each internal trie node adds an over-
head over a direct array-based encoding, so finding a small
representation for internal nodes is crucial. On the other
hand, HAMTs do not need expensive table resizing and do
not waste (much) space on null references.

Degeneration on delete: Any delete operations can cause a
HAMT to deviate from its most compact representation,
leading to superfluous internal nodes harming cache local-
ity, adding indirections for lookup, insertion and deletion,
and increasing memory size. Delete on most hashtable
implementations is a lot less influential.

Non-locality slows down iteration: When iterating over all
elements, a hashtable benefits from locality by linearly
scanning through a continuous array. A HAMT, in com-
parison, must perform a depth-first in-order traversal over
a complex object graph (going up and down), which in-
creases the chance of cache misses.

Equality is punished twice: While iterating over the one
HAMT and looking up elements in the other, the non-
locality and a possibly degenerate structure make equality
checking an expensive operation.

2.2 Mutable and Immutable Update Semantics
HAMTs are suitable to implement data structures with mutable
and immutable update semantics. The two variants differ in
how and when nodes have to be reallocated. Mutable HAMTs
reallocate a node if and only if the node’s arity changes [3].
Otherwise, values or sub-node references are updated in-

A
0 2

0
D

1

B
0

C
4

(a) Internal

0 2

A
0 1

0 4
D

B C

(b) Leaf

Figure 2. HAMT-based sets with values in internal nodes
versus values at the leaves only.

place without reallocation. In contrast to mutable HAMTs,
immutable HAMTs perform path-copying on updates [22, 27]:
the edited node and all its parent nodes are reallocated. The
resulting new root node satisfies the immutability property
by resembling the updated path-copied branch and, for the
remainder, references to unmodified branches.

2.3 Memory Layouts and Hash Code Memoization
Figure 2 illustrates the two principle choices for a HAMT’s
memory layout: storing values next to sub-nodes directly in
internal nodes, as opposed to storing them at the leaf level.

The former approach originates from Bagwell [3], it
increases locality and saves space over the latter. Because
a HAMT encodes the prefixes of hash codes implicitly in its
tree structure, it can avoid storing full 32-bit hash codes. As
a result, this design yields a very low memory footprint at the
potential cost of increased runtimes of update operations.

The latter approach stores elements in leaf nodes, sepa-
rated from inner prefix tree nodes. While leaf nodes increase
the data structure’s memory footprint, they enable storage
of additional information along the elements. Scala for ex-
ample memoizes the hash codes of elements inside the leafs.
Memoized hash codes consequently enable fast failing on
negative lookups by first comparing hash codes, and avoid
recalculation of hash codes upon prefix expansion.

785

2The CHAMP (OOPSLA 2015) data structure is a variant of the HAMT.
SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 27 / 32

https://doi.org/10.1145/2814270.2814312
https://en.wikipedia.org/wiki/Hash_array_mapped_trie


TreeSet and TreeMap
TreeSet and TreeMap are sets and maps of elements with sorted order
using red-black trees.

For example, the following set is represented as a red-black tree:

val set = Set(1, 6, 8, 11, 13, 15, 17, 25, 22, 27)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 28 / 32



TreeSet and TreeMap
TreeSet and TreeMap are sets and maps of elements with sorted order
using red-black trees.

For example, the following set is represented as a red-black tree:

val set = Set(1, 6, 8, 11, 13, 15, 17, 25, 22, 27)

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 28 / 32



Contents
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 29 / 32



Performance Characteristics

head tail apply update prepend append
List C C L L C L

ArraySeq C L C L L L
Vector eC eC eC eC eC eC
Queue aC aC L L L C
Range C C C - - -
String C L C L L L

lookup add remove min
HashSet/HashMap eC eC eC L

TreeSet/TreeMap Log Log Log Log
BitSet C L L eC3

VectorMap eC eC aC L
ListMap L L L L

where L = linear time, Log = logarithmic time, C = constant time,
eC = effectively constant time, and aC = amortized constant time.

3Assuming bits are densely packed.
SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 30 / 32



Summary
1. Recall: Basic Immutable Collections

Lists, Options, Maps, and Sets

2. Why Immutable Collections?

3. Collections Hierarchy

4. Sequences
ArraySeq
Vector
Range
Queue

5. Sets and Maps
HashSet and HashMap
TreeSet and TreeMap

6. Performance Characteristics

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 31 / 32



Next Lecture
• For Comprehensions

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 5 – Immutable Collections April 8, 2024 32 / 32

https://plrg.korea.ac.kr

	Recall: Basic Immutable Collections
	Lists, Options, Maps, and Sets

	Why Immutable Collections?
	Collections Hierarchy
	Sequences
	ArraySeq
	Vector
	Range
	Queue

	Sets and Maps
	HashSet and HashMap
	TreeSet and TreeMap

	Performance Characteristics

