
Lecture 9 – Advanced Types
SWS121: Secure Programming

Jihyeok Park

2024 Spring

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 1 / 33

Recall
• Generic Classes

• Generic Methods/Functions

• Type Bounds

• Variances

• Abstract Type Members

• Inner Classes

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 2 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 3 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 4 / 33

Intersection Types
The & operator is used to create an intersection type.

The type A & B represents values of both type A and B at the same time.

For example, consider the following code:

trait A { def foo(x: Int): Int }
trait B { def bar(x: Int): Int }

def f(x: A & B): Int = x.foo(10) + x.bar(20)

Since x is of type A & B, it can access both the foo in A and the bar in B.

We can call f with an object that implements both A and B.

class C extends A with B:
def foo(x: Int): Int = x + 1
def bar(x: Int): Int = x + 2

f(new C) // (10 + 1) + (20 + 2) = 33

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 5 / 33

Intersection Types
The & operator is used to create an intersection type.

The type A & B represents values of both type A and B at the same time.

For example, consider the following code:

trait A { def foo(x: Int): Int }
trait B { def bar(x: Int): Int }

def f(x: A & B): Int = x.foo(10) + x.bar(20)

Since x is of type A & B, it can access both the foo in A and the bar in B.

We can call f with an object that implements both A and B.

class C extends A with B:
def foo(x: Int): Int = x + 1
def bar(x: Int): Int = x + 2

f(new C) // (10 + 1) + (20 + 2) = 33

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 5 / 33

Intersection Types
The & operator is used to create an intersection type.

The type A & B represents values of both type A and B at the same time.

For example, consider the following code:

trait A { def foo(x: Int): Int }
trait B { def bar(x: Int): Int }

def f(x: A & B): Int = x.foo(10) + x.bar(20)

Since x is of type A & B, it can access both the foo in A and the bar in B.

We can call f with an object that implements both A and B.

class C extends A with B:
def foo(x: Int): Int = x + 1
def bar(x: Int): Int = x + 2

f(new C) // (10 + 1) + (20 + 2) = 33

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 5 / 33

Intersection Types
The & operator is used to create an intersection type.

The type A & B represents values of both type A and B at the same time.

For example, consider the following code:

trait A { def foo(x: Int): Int }
trait B { def bar(x: Int): Int }

def f(x: A & B): Int = x.foo(10) + x.bar(20)

Since x is of type A & B, it can access both the foo in A and the bar in B.

We can call f with an object that implements both A and B.

class C extends A with B:
def foo(x: Int): Int = x + 1
def bar(x: Int): Int = x + 2

f(new C) // (10 + 1) + (20 + 2) = 33

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 5 / 33

Intersection Types
The & operator is used to create an intersection type.

The type A & B represents values of both type A and B at the same time.

For example, consider the following code:

trait A { def foo(x: Int): Int }
trait B { def bar(x: Int): Int }

def f(x: A & B): Int = x.foo(10) + x.bar(20)

Since x is of type A & B, it can access both the foo in A and the bar in B.

We can call f with an object that implements both A and B.

class C extends A with B:
def foo(x: Int): Int = x + 1
def bar(x: Int): Int = x + 2

f(new C) // (10 + 1) + (20 + 2) = 33

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 5 / 33

Union Types
On the other hand, the | operator is used to create a union type.

The type A | B represents values of either type A or B.

For example, consider the following code:

case class Username(name: String)
case class Password(hash: String)

def getData(x: A | B): String = ???

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 6 / 33

Union Types
On the other hand, the | operator is used to create a union type.

The type A | B represents values of either type A or B.

For example, consider the following code:

case class Username(name: String)
case class Password(hash: String)

def getData(x: A | B): String = ???

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 6 / 33

Union Types
On the other hand, the | operator is used to create a union type.

The type A | B represents values of either type A or B.

For example, consider the following code:

case class Username(name: String)
case class Password(hash: String)

def getData(x: A | B): String = ???

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 6 / 33

Union Types
On the other hand, the | operator is used to create a union type.

The type A | B represents values of either type A or B.

For example, consider the following code:

case class Username(name: String)
case class Password(hash: String)

def getData(x: A | B): String = x match
case Username(name) => name
case Password(hash) => hash

You can use pattern matching to extract the value from the union type.

We can call getData with either a Username or a Password.

getData(Username("alice")) // "alice"
getData(Password("x2ef3")) // "x2ef3"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 7 / 33

Union Types
On the other hand, the | operator is used to create a union type.

The type A | B represents values of either type A or B.

For example, consider the following code:

case class Username(name: String)
case class Password(hash: String)

def getData(x: A | B): String = x match
case Username(name) => name
case Password(hash) => hash

You can use pattern matching to extract the value from the union type.

We can call getData with either a Username or a Password.

getData(Username("alice")) // "alice"
getData(Password("x2ef3")) // "x2ef3"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 7 / 33

Union Types – Inferece
The compiler assigns a union type to an expression only if such a type is
explicitly declared.

For example, the following code does not infer a union type:

case class Username(name: String)
case class Password(hash: String)
val name = Username("alice") // name: Username = Username("alice")
val pass = Password("x2ef3") // pass: Password = Password("x2ef3")

The following code infers the Object type rather than a union type:

val x = if (true) name else pass
// x: Object = Username("alice")

To assign a union type to x, you need to explicitly declare it:

val x: Username | Password = if (true) name else pass
// x: Username | Password = Username("alice")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 8 / 33

Union Types – Inferece
The compiler assigns a union type to an expression only if such a type is
explicitly declared.

For example, the following code does not infer a union type:

case class Username(name: String)
case class Password(hash: String)
val name = Username("alice") // name: Username = Username("alice")
val pass = Password("x2ef3") // pass: Password = Password("x2ef3")

The following code infers the Object type rather than a union type:

val x = if (true) name else pass
// x: Object = Username("alice")

To assign a union type to x, you need to explicitly declare it:

val x: Username | Password = if (true) name else pass
// x: Username | Password = Username("alice")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 8 / 33

Union Types – Inferece
The compiler assigns a union type to an expression only if such a type is
explicitly declared.

For example, the following code does not infer a union type:

case class Username(name: String)
case class Password(hash: String)
val name = Username("alice") // name: Username = Username("alice")
val pass = Password("x2ef3") // pass: Password = Password("x2ef3")

The following code infers the Object type rather than a union type:

val x = if (true) name else pass
// x: Object = Username("alice")

To assign a union type to x, you need to explicitly declare it:

val x: Username | Password = if (true) name else pass
// x: Username | Password = Username("alice")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 8 / 33

Union Types – Inferece
The compiler assigns a union type to an expression only if such a type is
explicitly declared.

For example, the following code does not infer a union type:

case class Username(name: String)
case class Password(hash: String)
val name = Username("alice") // name: Username = Username("alice")
val pass = Password("x2ef3") // pass: Password = Password("x2ef3")

The following code infers the Object type rather than a union type:

val x = if (true) name else pass
// x: Object = Username("alice")

To assign a union type to x, you need to explicitly declare it:

val x: Username | Password = if (true) name else pass
// x: Username | Password = Username("alice")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 8 / 33

Union Types – Alternatives
Without union types, we can represent the same concept in two ways.

First, we can define a common supertype using a trait:

trait UsernameOrPassword
case class Username(name: String) extends UsernameOrPassword
case class Password(hash: String) extends UsernameOrPassword

Second, we can use enum (algebraic data types, ADTs) to represent the
union type because ADTs are tagged union (sum) types of product types:

enum UsernameOrPassword:
case Username(name: String)
case Password(hash: String)

To directly access the constructors for ADTs, you need to import them:

import UsernameOrPassword.*

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 9 / 33

Union Types – Alternatives
Without union types, we can represent the same concept in two ways.

First, we can define a common supertype using a trait:

trait UsernameOrPassword
case class Username(name: String) extends UsernameOrPassword
case class Password(hash: String) extends UsernameOrPassword

Second, we can use enum (algebraic data types, ADTs) to represent the
union type because ADTs are tagged union (sum) types of product types:

enum UsernameOrPassword:
case Username(name: String)
case Password(hash: String)

To directly access the constructors for ADTs, you need to import them:

import UsernameOrPassword.*

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 9 / 33

Union Types – Alternatives
Without union types, we can represent the same concept in two ways.

First, we can define a common supertype using a trait:

trait UsernameOrPassword
case class Username(name: String) extends UsernameOrPassword
case class Password(hash: String) extends UsernameOrPassword

Second, we can use enum (algebraic data types, ADTs) to represent the
union type because ADTs are tagged union (sum) types of product types:

enum UsernameOrPassword:
case Username(name: String)
case Password(hash: String)

To directly access the constructors for ADTs, you need to import them:

import UsernameOrPassword.*

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 9 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Properties of Intersection and Union Types
Intersection and union types have the following properties:

• Commutativity for intersection and union types:

A & B ≡ B & A and A | B ≡ B | A

• Associativity for intersection and union types:

A & (B & C) ≡ (A & B) & C and A | (B | C) ≡ (A | B) | C

• Distributivity for intersection over union:

A | (B & C) ≡ (A | B) & (A | C) and
A & (B | C) ≡ (A & B) | (A & C)

• Idempotence for intersection and union types:

A & A ≡ A and A | A ≡ A

• Intersection types have a higher precedence than union types:

A & B | C ≡ (A & B) | C

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 10 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 11 / 33

Self Types
Self-types are a way to declare that a trait must be mixed into another
trait, and they narrow the type of this to be the type of mixed-in trait.

For example, Tweeter trait has User as a self-type:

trait User { def username: String }
trait Tweeter { this: User =>

def tweet(msg: String): Unit = println(s"$msg by $username")
}
class VerifiedTweeter(val username: String) extends User with Tweeter

It means that we need to mix in User when we mix in Tweeter.

// error: illegal inheritance
case class InvalidTweeter(val username: String) extends Tweeter

// OK
case class ValidTweeter(val username: String) extends Tweeter with User

ValidTweeter("alice").tweet("Hello") // "Hello by alice"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 12 / 33

Self Types
Self-types are a way to declare that a trait must be mixed into another
trait, and they narrow the type of this to be the type of mixed-in trait.

For example, Tweeter trait has User as a self-type:

trait User { def username: String }
trait Tweeter { this: User =>

def tweet(msg: String): Unit = println(s"$msg by $username")
}
class VerifiedTweeter(val username: String) extends User with Tweeter

It means that we need to mix in User when we mix in Tweeter.

// error: illegal inheritance
case class InvalidTweeter(val username: String) extends Tweeter

// OK
case class ValidTweeter(val username: String) extends Tweeter with User

ValidTweeter("alice").tweet("Hello") // "Hello by alice"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 12 / 33

Self Types
Self-types are a way to declare that a trait must be mixed into another
trait, and they narrow the type of this to be the type of mixed-in trait.

For example, Tweeter trait has User as a self-type:

trait User { def username: String }
trait Tweeter { this: User =>

def tweet(msg: String): Unit = println(s"$msg by $username")
}
class VerifiedTweeter(val username: String) extends User with Tweeter

It means that we need to mix in User when we mix in Tweeter.

// error: illegal inheritance
case class InvalidTweeter(val username: String) extends Tweeter

// OK
case class ValidTweeter(val username: String) extends Tweeter with User

ValidTweeter("alice").tweet("Hello") // "Hello by alice"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 12 / 33

Self Types
We can use any other name instead of this for the self-type:

trait Tweeter { self: User => ... }

If we omit its type annotation, it does not restrict the type of this:

trait Tweeter { self => ... } // self: Tweeter

We can refer to this of the outer class in the inner class using self-types.

case class A { self =>
val name = "Alice"
case class B {

val name = self.name
def printName: Unit =

println(s"Inner name: ${name}")
println(s"Inner name: ${this.name}")
println(s"Outer name: ${self.name}")

}
}

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 13 / 33

Self Types
We can use any other name instead of this for the self-type:

trait Tweeter { self: User => ... }

If we omit its type annotation, it does not restrict the type of this:

trait Tweeter { self => ... } // self: Tweeter

We can refer to this of the outer class in the inner class using self-types.

case class A { self =>
val name = "Alice"
case class B {

val name = self.name
def printName: Unit =

println(s"Inner name: ${name}")
println(s"Inner name: ${this.name}")
println(s"Outer name: ${self.name}")

}
}

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 13 / 33

Self Types
We can use any other name instead of this for the self-type:

trait Tweeter { self: User => ... }

If we omit its type annotation, it does not restrict the type of this:

trait Tweeter { self => ... } // self: Tweeter

We can refer to this of the outer class in the inner class using self-types.

case class A { self =>
val name = "Alice"
case class B {

val name = self.name
def printName: Unit =

println(s"Inner name: ${name}")
println(s"Inner name: ${this.name}")
println(s"Outer name: ${self.name}")

}
}

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 13 / 33

Self Types – Dependency Injection
Self-types are useful for dependency injection and it is often called the
cake pattern in Scala.

trait UserTrait { def name: String }
// TweeterTrait depends on UserTrait without real implementation
trait TweeterTrait { this: UserTrait =>

def tweet(msg: String): Unit = println(s"$msg by $name")
}

We can mix in different implementations of UserTrait to TweeterTrait.

trait UserImpl1 extends UserTrait { val name = "Alice" }
object TweeterImpl1 extends TweeterTrait with UserImpl1
TweeterImpl1.tweet("Hello") // "Hello by Alice"

trait UserImpl2 extends UserTrait { val name = "Bob" }
object TweeterImpl2 extends TweeterTrait with UserImpl2
TweeterImpl2.tweet("Hi") // "Hi by Bob"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 14 / 33

Self Types – Dependency Injection
Self-types are useful for dependency injection and it is often called the
cake pattern in Scala.

trait UserTrait { def name: String }
// TweeterTrait depends on UserTrait without real implementation
trait TweeterTrait { this: UserTrait =>

def tweet(msg: String): Unit = println(s"$msg by $name")
}

We can mix in different implementations of UserTrait to TweeterTrait.

trait UserImpl1 extends UserTrait { val name = "Alice" }
object TweeterImpl1 extends TweeterTrait with UserImpl1
TweeterImpl1.tweet("Hello") // "Hello by Alice"

trait UserImpl2 extends UserTrait { val name = "Bob" }
object TweeterImpl2 extends TweeterTrait with UserImpl2
TweeterImpl2.tweet("Hi") // "Hi by Bob"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 14 / 33

Self Types – Dependency Injection
Why we need self-types rather than inheritance?

More fine-grained control over the encapsulation of the implementation.

For example, assume that we want to share the f method in A with B but
not with C.

We can use self-types to achieve this:

trait A { def f: Int }
trait B { self: A => def g: Int = f }
trait C extends B { def h: Int = f } // error: f is not accessible

However, we cannot achieve the same with inheritance:

trait A { def f: Int }
trait B extends A { def g: Int = f }
trait C extends B { def h: Int = f } // No error -- breaks encapsulation

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 15 / 33

Self Types – Dependency Injection
Why we need self-types rather than inheritance?

More fine-grained control over the encapsulation of the implementation.

For example, assume that we want to share the f method in A with B but
not with C.

We can use self-types to achieve this:

trait A { def f: Int }
trait B { self: A => def g: Int = f }
trait C extends B { def h: Int = f } // error: f is not accessible

However, we cannot achieve the same with inheritance:

trait A { def f: Int }
trait B extends A { def g: Int = f }
trait C extends B { def h: Int = f } // No error -- breaks encapsulation

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 15 / 33

Self Types – Dependency Injection
Why we need self-types rather than inheritance?

More fine-grained control over the encapsulation of the implementation.

For example, assume that we want to share the f method in A with B but
not with C.

We can use self-types to achieve this:

trait A { def f: Int }
trait B { self: A => def g: Int = f }
trait C extends B { def h: Int = f } // error: f is not accessible

However, we cannot achieve the same with inheritance:

trait A { def f: Int }
trait B extends A { def g: Int = f }
trait C extends B { def h: Int = f } // No error -- breaks encapsulation

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 15 / 33

Self Types – Dependency Injection
Why we need self-types rather than inheritance?

More fine-grained control over the encapsulation of the implementation.

For example, assume that we want to share the f method in A with B but
not with C.

We can use self-types to achieve this:

trait A { def f: Int }
trait B { self: A => def g: Int = f }
trait C extends B { def h: Int = f } // error: f is not accessible

However, we cannot achieve the same with inheritance:

trait A { def f: Int }
trait B extends A { def g: Int = f }
trait C extends B { def h: Int = f } // No error -- breaks encapsulation

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 15 / 33

Self Types – Dependency Injection
Why we need self-types rather than inheritance?

More fine-grained control over the encapsulation of the implementation.

For example, assume that we want to share the f method in A with B but
not with C.

We can use self-types to achieve this:

trait A { def f: Int }
trait B { self: A => def g: Int = f }
trait C extends B { def h: Int = f } // error: f is not accessible

However, we cannot achieve the same with inheritance:

trait A { def f: Int }
trait B extends A { def g: Int = f }
trait C extends B { def h: Int = f } // No error -- breaks encapsulation

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 15 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 16 / 33

Opaque Types
Let us assume we want to define a module that offers arithmetic on
numbers, which are represented by their logarithm.

We can define a class Logarithm with Double:
class Logarithm(val underlying: Double):

def toDouble: Double = math.exp(underlying)
def + (that: Logarithm): Logarithm =

Logarithm(this.toDouble + that.toDouble)
def * (that: Logarithm): Logarithm =

new Logarithm(this.underlying + that.underlying)
object Logarithm:

def apply(d: Double): Logarithm = new Logarithm(math.log(d))

val x = Logarithm(2.0) // x.underlying = log(2.0) = 0.693147
val y = Logarithm(3.0) // y.underlying = log(3.0) = 1.098612
println((x + y).toDouble) // 5.0
println((x * y).toDouble) // 6.0

However, it has unnecessary performance overhead because of the
boxing and unboxing of Double values.

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 17 / 33

Opaque Types
Let us assume we want to define a module that offers arithmetic on
numbers, which are represented by their logarithm.

We can define a class Logarithm with Double:
class Logarithm(val underlying: Double):

def toDouble: Double = math.exp(underlying)
def + (that: Logarithm): Logarithm =

Logarithm(this.toDouble + that.toDouble)
def * (that: Logarithm): Logarithm =

new Logarithm(this.underlying + that.underlying)
object Logarithm:

def apply(d: Double): Logarithm = new Logarithm(math.log(d))

val x = Logarithm(2.0) // x.underlying = log(2.0) = 0.693147
val y = Logarithm(3.0) // y.underlying = log(3.0) = 1.098612
println((x + y).toDouble) // 5.0
println((x * y).toDouble) // 6.0

However, it has unnecessary performance overhead because of the
boxing and unboxing of Double values.

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 17 / 33

Opaque Types
Let us assume we want to define a module that offers arithmetic on
numbers, which are represented by their logarithm.

We can define a class Logarithm with Double:
class Logarithm(val underlying: Double):

def toDouble: Double = math.exp(underlying)
def + (that: Logarithm): Logarithm =

Logarithm(this.toDouble + that.toDouble)
def * (that: Logarithm): Logarithm =

new Logarithm(this.underlying + that.underlying)
object Logarithm:

def apply(d: Double): Logarithm = new Logarithm(math.log(d))

val x = Logarithm(2.0) // x.underlying = log(2.0) = 0.693147
val y = Logarithm(3.0) // y.underlying = log(3.0) = 1.098612
println((x + y).toDouble) // 5.0
println((x * y).toDouble) // 6.0

However, it has unnecessary performance overhead because of the
boxing and unboxing of Double values.

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 17 / 33

Opaque Types
We can use a type alias to remove the performance overhead:

object Logarithms:
type Logarithm = Double
def add(x: Logarithm, y: Logarithm): Logarithm =

make(extract(x) + extract(y))
def mul(x: Logarithm, y: Logarithm): Logarithm = x + y
def make(d: Double): Logarithm = math.log(d)
def extract(x: Logarithm): Double = math.exp(x)

import Logarithms.*
val x: Logarithm = make(2.0) // x = log(2.0) = 0.693147
val y: Logarithm = make(3.0) // y = log(3.0) = 1.098612
println(extract(add(x, y))) // 5.0
println(extract(mul(x, y))) // 6.0

However, it make the equality Logarithm = Double visible to the users,
who might misuse it by accidentally mixing Logarithm and Double.

val d: Double = x // type checks AND leaks the equality!

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 18 / 33

Opaque Types
We can use a type alias to remove the performance overhead:

object Logarithms:
type Logarithm = Double
def add(x: Logarithm, y: Logarithm): Logarithm =

make(extract(x) + extract(y))
def mul(x: Logarithm, y: Logarithm): Logarithm = x + y
def make(d: Double): Logarithm = math.log(d)
def extract(x: Logarithm): Double = math.exp(x)

import Logarithms.*
val x: Logarithm = make(2.0) // x = log(2.0) = 0.693147
val y: Logarithm = make(3.0) // y = log(3.0) = 1.098612
println(extract(add(x, y))) // 5.0
println(extract(mul(x, y))) // 6.0

However, it make the equality Logarithm = Double visible to the users,
who might misuse it by accidentally mixing Logarithm and Double.

val d: Double = x // type checks AND leaks the equality!

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 18 / 33

Opaque Types
We can use opaque types to hide the equality and still remove the
performance overhead of boxing and unboxing Double values:

object Logarithms:
opaque type Logarithm = Double
...

import Logarithms.*
val x: Logarithm = make(2.0) // x = log(2.0) = 0.693147
val y: Logarithm = make(3.0) // y = log(3.0) = 1.098612
println(extract(add(x, y))) // 5.0
println(extract(mul(x, y))) // 6.0

Now, the equality Logarithm = Double is hidden from the users and the
type system prevents the misuse of Logarithm and Double.

val d: Double = x // error: found: Logarithm, required: Double

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 19 / 33

Opaque Types
We can use opaque types to hide the equality and still remove the
performance overhead of boxing and unboxing Double values:

object Logarithms:
opaque type Logarithm = Double
...

import Logarithms.*
val x: Logarithm = make(2.0) // x = log(2.0) = 0.693147
val y: Logarithm = make(3.0) // y = log(3.0) = 1.098612
println(extract(add(x, y))) // 5.0
println(extract(mul(x, y))) // 6.0

Now, the equality Logarithm = Double is hidden from the users and the
type system prevents the misuse of Logarithm and Double.

val d: Double = x // error: found: Logarithm, required: Double

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 19 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 20 / 33

Structural Types
Structural types specify that types must have a certain structure.

It is often called duck typing because it is based on the principle that if it
looks like a duck and quacks like a duck, it must be a duck.

For example, consider the following code:
class Duck { def fly = println("Duck flies") }
class Eagle { def fly = println("Eagle flies") }
class Dog { def walk = println("Dog walks") }

How can we define a method that takes any object that has a fly method
without changing the definition of the classes?

We can use a structural type to do so:
import scala.reflect.Selectable.reflectiveSelectable
def makeItFly(x: { def fly: Unit }): Unit = x.fly
makeItFly(new Duck) // "Duck flies"
makeItFly(new Eagle) // "Eagle flies"
makeItFly(new Dog) // error: Dog does not have a fly method

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 21 / 33

Structural Types
Structural types specify that types must have a certain structure.

It is often called duck typing because it is based on the principle that if it
looks like a duck and quacks like a duck, it must be a duck.

For example, consider the following code:
class Duck { def fly = println("Duck flies") }
class Eagle { def fly = println("Eagle flies") }
class Dog { def walk = println("Dog walks") }

How can we define a method that takes any object that has a fly method
without changing the definition of the classes?

We can use a structural type to do so:
import scala.reflect.Selectable.reflectiveSelectable
def makeItFly(x: { def fly: Unit }): Unit = x.fly
makeItFly(new Duck) // "Duck flies"
makeItFly(new Eagle) // "Eagle flies"
makeItFly(new Dog) // error: Dog does not have a fly method

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 21 / 33

Structural Types
Structural types specify that types must have a certain structure.

It is often called duck typing because it is based on the principle that if it
looks like a duck and quacks like a duck, it must be a duck.

For example, consider the following code:
class Duck { def fly = println("Duck flies") }
class Eagle { def fly = println("Eagle flies") }
class Dog { def walk = println("Dog walks") }

How can we define a method that takes any object that has a fly method
without changing the definition of the classes?

We can use a structural type to do so:
import scala.reflect.Selectable.reflectiveSelectable
def makeItFly(x: { def fly: Unit }): Unit = x.fly
makeItFly(new Duck) // "Duck flies"
makeItFly(new Eagle) // "Eagle flies"
makeItFly(new Dog) // error: Dog does not have a fly method

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 21 / 33

Structural Types
Structural types specify that types must have a certain structure.

It is often called duck typing because it is based on the principle that if it
looks like a duck and quacks like a duck, it must be a duck.

For example, consider the following code:
class Duck { def fly = println("Duck flies") }
class Eagle { def fly = println("Eagle flies") }
class Dog { def walk = println("Dog walks") }

How can we define a method that takes any object that has a fly method
without changing the definition of the classes?

We can use a structural type to do so:
import scala.reflect.Selectable.reflectiveSelectable
def makeItFly(x: { def fly: Unit }): Unit = x.fly
makeItFly(new Duck) // "Duck flies"
makeItFly(new Eagle) // "Eagle flies"
makeItFly(new Dog) // error: Dog does not have a fly method

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 21 / 33

Structural Types
Structural types specify that types must have a certain structure.

It is often called duck typing because it is based on the principle that if it
looks like a duck and quacks like a duck, it must be a duck.

For example, consider the following code:
class Duck { def fly = println("Duck flies") }
class Eagle { def fly = println("Eagle flies") }
class Dog { def walk = println("Dog walks") }

How can we define a method that takes any object that has a fly method
without changing the definition of the classes?

We can use a structural type to do so:
import scala.reflect.Selectable.reflectiveSelectable
def makeItFly(x: { def fly: Unit }): Unit = x.fly
makeItFly(new Duck) // "Duck flies"
makeItFly(new Eagle) // "Eagle flies"
makeItFly(new Dog) // error: Dog does not have a fly method

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 21 / 33

Structural Types – Example
Let’s use a structural type to define a autoClose method to
automatically close a resource after using it.

import scala.reflect.Selectable.reflectiveSelectable

class File { def close = println("File closed") }
class InputStarem { def close = println("InputStream closed") }

type Closable = { def close: Unit }
def autoClose(resource: Closable)(op: Closable => Unit): Unit =

try op(resource) finally resource.close

autoClose(new File)(f => println("Reading from file"))
// "Reading from file"
// "File closed"

autoClose(new InputStarem)(in => println("Reading from input stream"))
// "Reading from input stream"
// "InputStream closed"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 22 / 33

Structural Types – Example
Let’s use a structural type to define a autoClose method to
automatically close a resource after using it.

import scala.reflect.Selectable.reflectiveSelectable

class File { def close = println("File closed") }
class InputStarem { def close = println("InputStream closed") }

type Closable = { def close: Unit }
def autoClose(resource: Closable)(op: Closable => Unit): Unit =

try op(resource) finally resource.close

autoClose(new File)(f => println("Reading from file"))
// "Reading from file"
// "File closed"

autoClose(new InputStarem)(in => println("Reading from input stream"))
// "Reading from input stream"
// "InputStream closed"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 22 / 33

Structural Types – Example
Let’s use a structural type to define a autoClose method to
automatically close a resource after using it.

import scala.reflect.Selectable.reflectiveSelectable

class File { def close = println("File closed") }
class InputStarem { def close = println("InputStream closed") }

type Closable = { def close: Unit }
def autoClose(resource: Closable)(op: Closable => Unit): Unit =

try op(resource) finally resource.close

autoClose(new File)(f => println("Reading from file"))
// "Reading from file"
// "File closed"

autoClose(new InputStarem)(in => println("Reading from input stream"))
// "Reading from input stream"
// "InputStream closed"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 22 / 33

Structural Types – Example
Let’s use a structural type to define a autoClose method to
automatically close a resource after using it.

import scala.reflect.Selectable.reflectiveSelectable

class File { def close = println("File closed") }
class InputStarem { def close = println("InputStream closed") }

type Closable = { def close: Unit }
def autoClose(resource: Closable)(op: Closable => Unit): Unit =

try op(resource) finally resource.close

autoClose(new File)(f => println("Reading from file"))
// "Reading from file"
// "File closed"

autoClose(new InputStarem)(in => println("Reading from input stream"))
// "Reading from input stream"
// "InputStream closed"

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 22 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 23 / 33

Type Lambdas
Type lambdas are a way to define anonymous type constructors.

For example, consider the following code:

type MapInt = [X] =>> Map[Int, X]
val m1: MapInt[String] = Map(1 -> "one", 2 -> "two")
val m2: MapInt[Double] = Map(1 -> 1.0, 2 -> 2.0)

A parameterized type is regarded as a shorthand for a type lambda:

type T[X] = R
// is equivalent to
type T = [X] =>> R

The body of a type lambda can again be a type lambda:

type Pair = [X] =>> [Y] =>> (X, Y)
val p: Pair[Int][String] = (1, "one")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 24 / 33

Type Lambdas
Type lambdas are a way to define anonymous type constructors.

For example, consider the following code:

type MapInt = [X] =>> Map[Int, X]
val m1: MapInt[String] = Map(1 -> "one", 2 -> "two")
val m2: MapInt[Double] = Map(1 -> 1.0, 2 -> 2.0)

A parameterized type is regarded as a shorthand for a type lambda:

type T[X] = R
// is equivalent to
type T = [X] =>> R

The body of a type lambda can again be a type lambda:

type Pair = [X] =>> [Y] =>> (X, Y)
val p: Pair[Int][String] = (1, "one")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 24 / 33

Type Lambdas
Type lambdas are a way to define anonymous type constructors.

For example, consider the following code:

type MapInt = [X] =>> Map[Int, X]
val m1: MapInt[String] = Map(1 -> "one", 2 -> "two")
val m2: MapInt[Double] = Map(1 -> 1.0, 2 -> 2.0)

A parameterized type is regarded as a shorthand for a type lambda:

type T[X] = R
// is equivalent to
type T = [X] =>> R

The body of a type lambda can again be a type lambda:

type Pair = [X] =>> [Y] =>> (X, Y)
val p: Pair[Int][String] = (1, "one")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 24 / 33

Type Lambdas
Type lambdas are a way to define anonymous type constructors.

For example, consider the following code:

type MapInt = [X] =>> Map[Int, X]
val m1: MapInt[String] = Map(1 -> "one", 2 -> "two")
val m2: MapInt[Double] = Map(1 -> 1.0, 2 -> 2.0)

A parameterized type is regarded as a shorthand for a type lambda:

type T[X] = R
// is equivalent to
type T = [X] =>> R

The body of a type lambda can again be a type lambda:

type Pair = [X] =>> [Y] =>> (X, Y)
val p: Pair[Int][String] = (1, "one")

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 24 / 33

Type Lambdas – Example
For example, let’s define our own Try type using a type lambda.

type MyTry = [X] =>> Either[Throwable, X]

val myTryInt: MyTry[Int] = Right(10)
val myTryStr: MyTry[String] = Right("Hello")
val myTryLeft: MyTry[Int] = Left(new Exception("Error"))

println(myTryInt) // Right(10)
println(myTryStr) // Right("Hello")
println(myTryLeft) // Left(java.lang.Exception: Error)

The left side of Either is always a Throwable and the right side is
remained as a blank to be filled with any type.

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 25 / 33

Type Lambdas – Example
For example, let’s define our own Try type using a type lambda.

type MyTry = [X] =>> Either[Throwable, X]

val myTryInt: MyTry[Int] = Right(10)
val myTryStr: MyTry[String] = Right("Hello")
val myTryLeft: MyTry[Int] = Left(new Exception("Error"))

println(myTryInt) // Right(10)
println(myTryStr) // Right("Hello")
println(myTryLeft) // Left(java.lang.Exception: Error)

The left side of Either is always a Throwable and the right side is
remained as a blank to be filled with any type.

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 25 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 26 / 33

Polymorphic Function Types
Scala supports polymorphic methods as follows:

def reverse[A](xs: List[A]): List[A] = xs.reverse

Similarly, a polymorphic function type is a function type which accepts
type parameters.

val reverse: [A] => List[A] => List[A] =
[A] => (xs: List[A]) => xs.reverse

This type describes function values which takes a type A as a parameter
and a list of type List[A] and returns the same type List[A].

Another example is a map method for tuples:

(1, "one", true).map((x: Any) => Option(x)) // type mismatch
(1, "one", true).map([T] => (x: T) => Option(x))
// (Some(1), Some("one"), Some(true))
// : (Option[Int], Option[String], Option[Boolean])

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 27 / 33

Polymorphic Function Types
Scala supports polymorphic methods as follows:

def reverse[A](xs: List[A]): List[A] = xs.reverse

Similarly, a polymorphic function type is a function type which accepts
type parameters.

val reverse: [A] => List[A] => List[A] =
[A] => (xs: List[A]) => xs.reverse

This type describes function values which takes a type A as a parameter
and a list of type List[A] and returns the same type List[A].

Another example is a map method for tuples:

(1, "one", true).map((x: Any) => Option(x)) // type mismatch
(1, "one", true).map([T] => (x: T) => Option(x))
// (Some(1), Some("one"), Some(true))
// : (Option[Int], Option[String], Option[Boolean])

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 27 / 33

Polymorphic Function Types
Scala supports polymorphic methods as follows:

def reverse[A](xs: List[A]): List[A] = xs.reverse

Similarly, a polymorphic function type is a function type which accepts
type parameters.

val reverse: [A] => List[A] => List[A] =
[A] => (xs: List[A]) => xs.reverse

This type describes function values which takes a type A as a parameter
and a list of type List[A] and returns the same type List[A].

Another example is a map method for tuples:

(1, "one", true).map((x: Any) => Option(x)) // type mismatch
(1, "one", true).map([T] => (x: T) => Option(x))
// (Some(1), Some("one"), Some(true))
// : (Option[Int], Option[String], Option[Boolean])

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 27 / 33

Polymorphic Function Types
Scala supports polymorphic methods as follows:

def reverse[A](xs: List[A]): List[A] = xs.reverse

Similarly, a polymorphic function type is a function type which accepts
type parameters.

val reverse: [A] => List[A] => List[A] =
[A] => (xs: List[A]) => xs.reverse

This type describes function values which takes a type A as a parameter
and a list of type List[A] and returns the same type List[A].

Another example is a map method for tuples:

(1, "one", true).map((x: Any) => Option(x)) // type mismatch
(1, "one", true).map([T] => (x: T) => Option(x))
// (Some(1), Some("one"), Some(true))
// : (Option[Int], Option[String], Option[Boolean])

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 27 / 33

Polymorphic Function Types vs. Type Lambdas
Polymorphic function types should not be confused with type lambdas.

A good way of understanding the difference is to notice that
• polymorphic functions are applied in terms

// Polymorphic function type
val id: [A] => A => A = [A] => (x: A) => x
val idInt: Int => Int = id[Int]

• type lambdas are applied in types, whereas

// Type lambda
type Id = [A] =>> A => A
type IdInt = Id[Int]

// Mixing type lambda and polymorphic function
val idInt2: IdInt = id[Int]

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 28 / 33

Polymorphic Function Types vs. Type Lambdas
Polymorphic function types should not be confused with type lambdas.

A good way of understanding the difference is to notice that
• polymorphic functions are applied in terms

// Polymorphic function type
val id: [A] => A => A = [A] => (x: A) => x
val idInt: Int => Int = id[Int]

• type lambdas are applied in types, whereas

// Type lambda
type Id = [A] =>> A => A
type IdInt = Id[Int]

// Mixing type lambda and polymorphic function
val idInt2: IdInt = id[Int]

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 28 / 33

Polymorphic Function Types vs. Type Lambdas
Polymorphic function types should not be confused with type lambdas.

A good way of understanding the difference is to notice that
• polymorphic functions are applied in terms

// Polymorphic function type
val id: [A] => A => A = [A] => (x: A) => x
val idInt: Int => Int = id[Int]

• type lambdas are applied in types, whereas

// Type lambda
type Id = [A] =>> A => A
type IdInt = Id[Int]

// Mixing type lambda and polymorphic function
val idInt2: IdInt = id[Int]

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 28 / 33

Contents

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 29 / 33

Match Types
A match type reduces to one of its right-hand sides, depending on the
match of the type argument.

type Elem[X] = X match
case String => Char
case List[t] => t
case Vector[t] => t

For example, the following code defines a method that returns the first
element of data structures:

def firstElem[X](xs: X): Elem[X] = xs match
case x: String => x.charAt(0)
case x: List[t] => x.head
case x: Vector[t] => x.head

val x: Char = firstElem("Hello") // 'H'
val y: Int = firstElem(List(1, 2)) // 1
val z: Double = firstElem(Vector(1.0, 2.0)) // 1.0

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 30 / 33

Match Types
A match type reduces to one of its right-hand sides, depending on the
match of the type argument.

type Elem[X] = X match
case String => Char
case List[t] => t
case Vector[t] => t

For example, the following code defines a method that returns the first
element of data structures:

def firstElem[X](xs: X): Elem[X] = xs match
case x: String => x.charAt(0)
case x: List[t] => x.head
case x: Vector[t] => x.head

val x: Char = firstElem("Hello") // 'H'
val y: Int = firstElem(List(1, 2)) // 1
val z: Double = firstElem(Vector(1.0, 2.0)) // 1.0

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 30 / 33

Match Types
A match type reduces to one of its right-hand sides, depending on the
match of the type argument.

type Elem[X] = X match
case String => Char
case List[t] => t
case Vector[t] => t

For example, the following code defines a method that returns the first
element of data structures:

def firstElem[X](xs: X): Elem[X] = xs match
case x: String => x.charAt(0)
case x: List[t] => x.head
case x: Vector[t] => x.head

val x: Char = firstElem("Hello") // 'H'
val y: Int = firstElem(List(1, 2)) // 1
val z: Double = firstElem(Vector(1.0, 2.0)) // 1.0

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 30 / 33

Match Types
We can define recursive match types as follows:

type LeafElem[X] = X match
case Int => Int
case String => Char
case List[t] => LeafElem[t]
case Vector[t] => LeafElem[t]

For example, it returns the first leaf element of data structures:

def leafElem[X](xs: X): LeafElem[X] = xs match
case x: Int => x
case x: String => x.charAt(0)
case x: List[t] => leafElem(x.head)
case x: Vector[t] => leafElem(x.head)

val x: Char = leafElem("Hello") // 'H'
val y: Int = leafElem(List(List(1, 2), List(3, 4))) // 1
val z: Char = leafElem(Vector(List(Vector("Hi", "Bye")))) // 'H'

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 31 / 33

Match Types
We can define recursive match types as follows:

type LeafElem[X] = X match
case Int => Int
case String => Char
case List[t] => LeafElem[t]
case Vector[t] => LeafElem[t]

For example, it returns the first leaf element of data structures:

def leafElem[X](xs: X): LeafElem[X] = xs match
case x: Int => x
case x: String => x.charAt(0)
case x: List[t] => leafElem(x.head)
case x: Vector[t] => leafElem(x.head)

val x: Char = leafElem("Hello") // 'H'
val y: Int = leafElem(List(List(1, 2), List(3, 4))) // 1
val z: Char = leafElem(Vector(List(Vector("Hi", "Bye")))) // 'H'

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 31 / 33

Match Types
We can define recursive match types as follows:

type LeafElem[X] = X match
case Int => Int
case String => Char
case List[t] => LeafElem[t]
case Vector[t] => LeafElem[t]

For example, it returns the first leaf element of data structures:

def leafElem[X](xs: X): LeafElem[X] = xs match
case x: Int => x
case x: String => x.charAt(0)
case x: List[t] => leafElem(x.head)
case x: Vector[t] => leafElem(x.head)

val x: Char = leafElem("Hello") // 'H'
val y: Int = leafElem(List(List(1, 2), List(3, 4))) // 1
val z: Char = leafElem(Vector(List(Vector("Hi", "Bye")))) // 'H'

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 31 / 33

Summary

1. Intersection and Union Types

2. Self Types

3. Opaque Types

4. Structural Types

5. Type Lambdas

6. Polymorphic Function Types

7. Match Types

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 32 / 33

Next Lecture
• Contextual Abstractions

Jihyeok Park
jihyeok park@korea.ac.kr

https://plrg.korea.ac.kr

SWS121 @ Korea University Lecture 9 – Advanced Types May 13, 2024 33 / 33

https://plrg.korea.ac.kr

	Intersection and Union Types
	Self Types
	Opaque Types
	Structural Types
	Type Lambdas
	Polymorphic Function Types
	Match Types

